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A very simple derivation of a closed-form solution to the stochastic evolution defined by Adler's over-
relaxation algorithm is given for free massive and massless scalar fields on a finite lattice with periodic
boundary conditions and checkerboard updating. It is argued that the results are directly relevant when
critical slowing down rejects the existence of Goldstone bosons in the system.
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A well-known problem faced by Monte Carlo simula-
tions' is that of critical slowing down. The essence of
the problem is the following: The standard algorithms
which work in practice do so in large part because only
local updates are made. These updates can be shown to
link into a Markov chain that converges to the desired
distribution. A local change in the fields aA'ects equally
all Fourier modes. However, at equilibrium, these modes
will often have very diferent typical sizes.

The large variation in typical sizes for Fourier modes
is especially pronounced when the system has large
correlations, be it because one tries to approach a contin-
uum limit or be it because the system, even without go-
ing to infinite uv cutofl, is in a phase which contains
Goldstone bosons accompanying the spontaneous break-
ing of a continuous symmetry. Both situations arise to-
gether in simulations of models describing strong in-
teractions (QCD with light fermions) and systems rel-
evant to weak interactions (the pure Higgs sector of the
Weinberg-Salam model).

One approach to dealing with the problem of critical
slowing down is to use Fourier-accelerated Langevin
simulations. The conceptual price paid is that one loses

&(x) =P[B'5/Be'(x)] [2co(2 —co)] ', [BS/Be(x)]
i

strict control over the form of the bare action. This
might be a particularly heavy price to be paid when one
deals with Higgs systems and the possible consequences
of triviality, because there one wants to be able to claim
that a complete sweep of a full physical range of a bare
coupling has been carried out. Another way to fight
against critical slowing down is to give up the strict local
character of the updating procedure.

Recently, numerical experimentations with variants
of a model proposed by Adler several years ago have
suggested that some progress can be made against criti-
cal slowing down without one s doing anything as drasti-
cally new as the multigrid method or Langevin updating
with Fourier acceleration. Even more recently Adler
gave a quantitative analysis showing how his method
achieves this goal.

Let me first present the basic idea of Adler's overre-
laxation algorithm (AOA) and explain why, qualitative-
ly, it may ameliorate critical slowing down. Suppose we
have a system a subset of whose variables, @(x), enter
only quadratically in the action, B"S/B@"(x)=0 for
n =3,4, . . . . AOA prescribes that we perform sequen-
tially local updates of these variables by the following
transition probabilities at site x:

e(x) =e(x;e(y),ywx)

P(+(x)—e'(x) ) = [&(x)/tr] 't'exp[ —&(x) [@'(x)—to@(x;@(y),y wx ) —(1 —to)@(x)] '].

The rest of the variables are dealt with by use of other
methods. Recently, Brown and Woch, Creutz, and
Adler have generalized AOA to actions which are not
"rnultiquadratic. " These developments will not concern
us here. With Eqs. (1) detailed balance is satisfied and,
as long as 0 & co & 2, so are the other requirements
necessary for the convergence of the Markov chain to the
desired probability distribution exp[ —PS[4&]]. We see
that AOA is a variant of the heat-bath algorithm, be-
coming identical to it for co= 1. m=2 gives a deter-
ministic, microcanonical, procedure.

For 1 & cu & 2 AOA may do better than the heat-bath
algorithm for critical slowing down: The local updates
are made to know something about the desire of the sys-
tern to give disparate sizes to the various Fourier modes
of d&(x) by a feedback mechanism which uses the fact

that at approximate equilibrium the instantaneous values
of +(x) are more or less adequately correlated. For ex-
ample, the exact conditional probability density P(+(x)
=+

~
@(0)=@0)d@of the Gibbs ensemble approximate-

ly predicts the distribution of @(x) even before an up-
date; for m&1 the new value is directly influenced, thus
building more nonlocality into the distribution. This ar-
gument is too crude to lead to an assessment of by how
much critical slowing down will be affected. Therefore,
it is better to try to investigate analytically solvable cases
and learn through them how and why AOA works. This
was part of the objective of Ref. 6.

Adler's quantitative analysis deals with a massless
free field with Dirichlet or Neumann boundary condi-
tions updated sequentially on a d-dimensional lattice by
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first stepping in unit increments in the x] direction, then
in the x2 direction, and so forth. Because of the particu-
lar order of sweeping through the lattice, the type of
boundary conditions, and the necessity of carrying out
the analysis on a continuum version of the model, al-
though one does learn how AOA deals with critical slow-

ing down, one might still wish to see an exactly solvable
case which is closer to what happens in practice.

The purpose of the present Letter is to fill in this gap;
it will turn out that although we deal with a somewhat
more realistic situation, the mathematical analysis is

simpler than in the case studied by Adler. In Ref. 3 it
was pointed out that the rate of convergence is governed
by the spectral radius of the matrix defining the linear
relationship between the old values of the fields and the
new ones and that this radius can be easily estimated.
Here we shall simply calculate all the eigenvalues of' the
matrix, explicitly diagonalizing it. We are still looking
at a free-field theory but we use checkerboard updating,
periodic boundary conditions, and work directly on the
lattice. The free field can be massive without complicat-

ing the analysis. The results v ill be seen to confirm
Adler's conclusions.

The action is given by

s [e]= —,
' g„„[e(x+p) —e(x) ] '+ m 'g„e'(x).

Here x denotes a lattice site and p a direction;
x =0, 1,2, . . . , I —1, p =1, . . . , d. Periodic boundary
conditions are imposed so that e(x) can be assumed to
be defined for any x with e(x+pL) =e(x) Vp, x. L
will be taken to be even, L =2N.

The Markov chain is defined by Eq. (I ) and by the
choice to update first all the even sites and subsequently
all the odd ones, once in each lattice sweep. A site is
even or odd according to whether ~~x =g„x„is even or
odd. Since Z is even there are as many even sites as odd
ones. The order of the updates within the odd or even
classes can be chosen at will without aAecting the subse-
quent analysis. Sweeps through the entire lattice are in-
dexed by n=0, 1,2, . . . . n=0 denotes the starting
configuration. In equations, we have

(x) (2d+m )[e + i (x) (1 cp)e (x)) z cpg [[I+ ( ) I II] [e (x+p) +e (x p)]
+ l 1 —( —) "*"][e„+i (x+gi) +e.+1(x—gi) ]1. (3)

The il„(x), n =1,2, 3, . . . , are norinally distributed independent variables with

(q„(x)q„,(x')) =~„„,~,
and cr =[P 'cp(2 —cp)(2d+m )] 'i .

Introducing the Fourier transforms of e(x) by

e„(x)=L g, exp(2xir x/L)e„(r),

with r„=0,1,2, . . . , L —1, and similarly for ti(x), and taking the inverse transform of Eq. (3), we obtain

(4)

(5)

—cril„+i(r) =(2d+m ) [e„+i(r)—(1 —cp)e„(r)] —cog„[cos(2xr„/L)]

x [e„(r)+e„+1(r)—e„(r+T) +e„+1(r+T)], (6)

where T=(N, N, N, . . . , N) so that ( —1) " =exp(2ziT x/L) and the notation assumes periodicity under r r+pL
Vp. The g(r) s are normally distributed stochastic variables: (ri„(r)q„,(s)) =L 8„6„„,.

Defining D =2d +m and f(r) = (cp/D) g„[cos(2nr„/L)] and replacing r by r+T in Eq. (6) we obtain

e„+,(r) e„(r) il„+ i (r)
A(r) =B(r)e„+t (r+ T) e„(r+T) D g„+1(r+T)

The 2 & 2 matrices A and B are given by

A(r) =I2+f(r)
—

1
—

1 1
—

1

B(r) =(I —cp)I2+f(r)

The general solution of Eq. (5) is

e„+,(r)
e„+1(r+T)

ep(r)=C"+'(r) —
( )

rn =n q +i(r)
g C" (r)A '(r)

D 9m+1
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where C =A 'B.
Relaxation and autocorrelation times are governed by

X ~ (r, co), the eigenvalues of C(r):

correlation

(&(x)&(0)):—L g, exp(2zcix. r/L)/AL(r)

(r, co) = (1 —co) {g(r,co) ~ [g (r, co) —1] 'i j,

g(r, co) =1+2f (r)/(1 —co).
(10)

must reproduce a nonzero expectation value for N at
infinite L [A(r) is the inverse full propagator in momen-
tum space]. For small r we expect

Without overrelaxation we have co =1 and

max, [I X+(r, I) I, I
X (r, 1)

I ] = exp( —m'/d)

= 1
—m'/d

for small m. The optimal value of co is defined to be the
one which attains

min„[max, [ I l+ (r, co) I, I
k —(r, co)

I ]j.

It is obtained if all the eigenvalues are made to contain
an imaginary part, that g (r;co) & I Vr. Oscillatory be-
havior has indeed been observed by Creutz. Its appear-
ance for m & 1 can be understood qualitatively: When co

approaches 2 the algorithm becomes microcanonical and
the transition matrix becomes the measure-preserving
map discussed in the Appendix of Bhanot, Creutz, and
Neuberger. The latter can be represented by a unitary
operator in a Hilbert space.

If g (r;co) & 1 Vr we have Vr
I
k+. (r, co)

I

=
I

co —
1

I

and therefore an absolutely uniform convergence rate for
all modes (independent of wavelength, as predicted by
Adler. To optimize we have to find the smallest

I
co —1

I
which gives g (r;co) & 1 Vr. Clearly

g;„(r,co) =g(0, co) =1 —(2co /D') [d'/(co —1)].
The optimum is obtained for co=co with g(0, co) = —1,
that is co —

1 =co [d/(2d+m )] . Writing co =2/
(I + C) as in Ref. 6 and m =2d 'i tan(9/2), with
0 ( 0 ( z, we obtain

C =2sin(8/2) [1+sin (9/2)]

I
X ~ (r, co) I

= tan" [(x—0)/4].

For small masses Ik~(r, co)
I =exp( —2m/d' ) and, in

comparison with co =1, where
I
X~ I,„=exp( —m /d),

the improvement factor in the relaxation time is 2d'i /m
in complete agreement with Adler's result of 2d'i /kla,
when his k&a is replaced by m. For large masses the op-
timal value of co approaches 1, the heat-bath value, but
I) ~(r, co)

I
=d m ', which is better by a factor of 4

than the heat-bath case m=1 because there we have
,„(r,1) I

=4d m . Therefore, even without poten-
tial critical slowing down, AOA is faster than standard
heat bath.

Suppose we are not interested in relaxing the zero
mode; this may be the case in a Goldstone system where
the zero mode has a typical size L", whereas the
nonzero, but soft, modes have an amplitude of order L.
This is so because, in a finite volume, the two-point

AL(r) = 4+„sin (zr„/L)+m, cf(L)

and therefore m, tr(L) =L /(@) reAecting the rapid
vanishing of the mass for L ~ as required by
Goldstone's theorem. The use of this approximation for
A(r) leads to order-or-magnitude estimates for the am-
plitudes of the appropriate modes as stated above. We
therefore may wish to just forget about trying to ef-
fectively average over the zero mode even at finite, but
large, L, or alternatively, we can deal with the zero mode
by another method.

For the other modes the massless version of Eq. (2) is
applicable. The fact that exp( —PS) is not integrable in
the massless case simply means that, in the free model,
the zero mode will not relax no matter what we do with
co. We now require g (r, co) & 1 Vr&0, T obtaining

C=2[pL(1 —pL)]'i', pL =d 'si n(x/L),

I~~ «, ~) I
=(1 —C)/(1+C) Vr~o, T,

(12)

We see that, with the exception of one mode, we have
uniform boundedness with a relaxation time growing as
L for large L. A heat-bath algorithm would lead to an
L growth instead.

A physical situation to which this analysis is particu-
larly relevant is the simulation of the pure Higgs sector
of the Weinberg-Salam model which is important for the
study of the eA'ects of triviality on the Higgs mass.
The true distributions of the modes representing the
Weinberg-Salam analogs of soft pions must be well ap-
proximated by weakly interacting plane waves (i.e. , al-
most free waves); otherwise soft-pion theorems could not
be right. So the averaging over the degrees of freedom
which best represent the pions in the continuum and
infinite volume limits should benefit from AOA and the
analysis presented in the present Letter should be of
direct relevance.
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