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Self-Dual Fields as Charge-Density Solitons
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Two-dimensional Poincare-invariant self-dual fields are consistently quantized. A fermionic formula-
tion is shown to be equivalent to a nonlocal bosonic one. Self-dual boson fields are solitons describing a
charge-density wave of paired fermions.
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There exists wide interest in quantization of two-
dimensional self-dual fields, i.e., fields + that satisfy
(g"'+e"')6,+ =0, or + =%''. ' (Overdot and prime sig-
nify differentiation with respect to time I and space x. )
However, the canonical/quantal formulation for this
simplest of all field dynamics appears to present great
difticulties, and elaborate quantization procedures have
been invoked, e.g. , Becchi-Rouet-Stora-Tyutin quantiza-
tion, first- and second-class constraints, auxiliary fields,
etc. Moreover, it has been alleged that a single self-dual
scalar field cannot be quantized. We oA'er here various
observations on this problem, which we encountered in

the construction of field-theoretic representations for
two-dimensional conformal transformations. Our for-
mulations involve spatially local and nonlocal actions.
They are invariant against the Poincare group of trans-
formations, which spontaneously contracts to a two-
parameter group. One version is manifestly invariant.

Consider a boson field Z which satisfies the equal-time
commutation relation

1H =— dxx'(x).2" (2)

(We suppress the common time argument of all opera-
tors. ) Clearly the field satisfies a self-dual equation of

4(x),Z(y)] =i8'(x —y)

with dynamics governed by a local Hamiltonian H, a
spatial integral of a Hamiltonian density &,

motion,

i =i (H, Z] =Z'.

This theory is obtained from the Lagrangean

dxdyX(x)e(x —y)i(y) ——J dxz'(x)4d 2

(4)

whose Euler-Lagrange equations imply (3), and canoni-
cal quantization gives (1). (Quantization of first-order
Lagrangeans is reviewed in the Appendix. ) In fact, the
Euler-Lagrange equations read

Z(x) =—
~ dy e(x —y) j'(y),2"

and so they imply, in addition to (3), a boundary condi-
tion consistent with (1), X(+~) = —Z( —~), which in-
dicates that soliton excitations play a role. Indeed it will

emerge that X can be considered a charge-density soliton.
To study the Poincare group of transformations, we

first consider time and space translations. Infinitesimal
time translations of the field are as always BTX=X. The
Lagrangean changes by a total time derivative BTL =L,
and Noether's theorem gives the energy constant of
motion, which of course is the Hamiltonian (2):

Jr dx . 6TZ(x) —L =—J dxZ (x) =H.6L 1

8i(x)
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Space translations 6~X= —E' leave L invariant, and the
total momentum constant of motion, according to
Noether's theorem,

P =&I dx 6 Z(x) = —H
6L

6i(x)
(7)

is equal to the negative energy. It is important to appre-
ciate that this equality holds on the entire configuration
space, not just for solutions to (3), which depend only on
t +x and describe left-propagating massless particles
with momentum opposite to their energy. The equation
of motion is not used to establish (7).

Because of (7), the Poincare algebra of H, P, and the
Lorentz generator M ([H,P] =0, [M,H] =iP, [M, P]
=iH) contracts to [H, M] =iH More.over, the Lorentz
generator, M =fdx x & (x) —tP, becomes in our model

M = — dx(t+x)z'(x).,
f

2 J

The Lorentz transformation rule for the field X is there-
fore

1/= — d z~d z2Z(z&)&(zI z2)Z(z2),2"
where z is the two vector (t, x) and the kernel E is

K(z) = —,
' (8, —8, ) 6(t )e(x).

(i 3a)

(i 31 )

When the field is Lorentz transformed according to (12),
which in finite form reads

cosh' sin hk
Z(z) =e'Z(Az), Az=

sin hX cosh' x (i 4)

the transformed action acquires a new kernel:

k(z, —z, ) =e '"Z(A(z, —z, )),
(is)

(contracted) Lie algebra, without use of equations of
motion. The more conventional transformation (12)
maps solutions into solutions, but does not leave the ac-
tion / =fdt L invariant. The transformed action, howev-

er, has the same critical points. This is seen as follows.
Write I as

6,Z(x) =i [M,Z(x)] =Z(x)+ (t+x)Z'(x). (9) E(Az) = —,
' e '(6, —r), )6(t cosh' —xsinhX)e(x).

6Z(x) = [f(t+x)Z(x)]' (io)

This leaves the Lagrangean invariant and Noether's
theorem reproduces M.

The Lagrangean is also invariant against the infinite
two-component two-dimensional conformal group, which
contracts to one component, with infinitesimal transfor-
mation law for the field

It is easy to see that K and E possess the same zero
modes. Because the action changes under the transfor-
mation, Noether's theorem cannot be used to derive a
conserved generator —but we do not need one, since (8)
and (9) do the job.

The remaining quantization is uneventful. Z(x) may
be decomposed (at t =0) as

involving an arbitrary function f Noether's theo. rem
gives generators

f
g/ = —J dx f(t +x)Z'(x)

2

z(x) = —i ~ dk
k

2~

With

[a(k)e —ikx a t(k)eikx]

6Lz(x) =z(x)+tZ'(x)+xi(x). (i 2)

Nevertheless, the generator that efT'ects (9) satisfies

that satisfy the infinite conformal algebra.
The Lorentz transformation law (9) is unconventional,

although it can be put in familiar form by use of the
equation of motion:

[a(k),a ~(k ')] =6(k —k '), (i7)

(1) is reproduced and a (k) creates a left-moving mass-
less particle with energy k ~ 0 and momentum —k. But
as we shall see, these are not the elementary excitations.
Normal ordering produces no surprises, other than the
usual extension in the conformal algebra:

[ —,':Z'(x):, —,':Z'-(y):] = —,
' i [:Z'(x ):+:Z'(y):16'(x—y) —(i/24tr) /i"'(x —y). (18)

y(x) =—Jtdy e(x —y)z(y), y'(x) =Z(x).1

2
(i9)

[y(x),y(y)] = —
—,
' ie(x —y). (2i)

Substitution of (19) in (4) gives a local Lagrangean,
with density While the Hamiltonian formulation is, by virtue of the

fixed-time definition (19), equivalent to the previous and
leads to the self-dual equation for p, the Euler-Lagrange
equations that follow from X are p'=p", i.e. , p' is self-

(2o)

and the nonlocality hidden in (19) reappears in the

A local action is obtained by a redefinition of the
dynamical variable: equal-time commutator. From (1) and (19) or from

canonical quantization of (20) one gets
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dual, as follows also from (19). Hence the formulation
in terms of the local field X with nonlocal dynamics is
preferable to the use of the nonlocal field ((i with local dy-
namics.

A completely local and manifestly Poincare-invariant
model may be constructed in terms of fermionic vari-
ables that expose the elementary excitations and are ap-
propriate in view of the soliton boundary conditions on X.
In two dimensions, the local, Poincare-invariant fermion
Lagrange density i)7iy"(i„y reduces for Weyl fermions,
because these are described by a one-component spinor

earlier bosonic one, when we identify
&/2

u(x) = lim
m 0 2Z

u'(x) = lim
m 0 2X

:exp[ —i(2ir) 'i'(((x )]:,

:exp[i(2x) 'i'(e(x)]:,

(26)

with m an infrared regulator needed to define the
normal-ordered exponential (see below). The proof is
standard, and follows the following steps. Define

(2ir) '"y(x) = 0(x)+0'(x), (27)

Xw =i u (u u ). (22)

SLu(x) = —,
'

u( x)+r u( x)+ ux( x) (23)

transforms as a scalar under the conventional
Lorentz transformation,

0(x ) g (g )e
—ikxdk

wi
(28)

where 0 is the positive-frequency (annihilation) part in a
decomposition of (( similar to (16),

and obviously gives a self-dual Euler-Lagrange equation
for u.

Canonical quantization of (22) leads to the anticom-
mutator

Thus
&/2

e 10 (x ) l8(x )eu(x) = lim
m 0 2Z

J

The commutator between 0(x) and 0t(x),

(29)

[u t(x), u(y)} =6(x —y) (24)

and the self-duality equation emerges canonically from
the Hamiltonian,

C(x —y) =[0(x),0t(y)] = e
—k(- y), -(30a)dk;k( )

k

is regulated in the infrared by a mass m, and is taken as

Hw =i J dx u (x)u'(x), (2S) C(x) = —Inm! x! —
—,
' ivy(x)

which again is the negative momentum. The excitations
are left-moving positive and negatively charged particles
with energy equal to the negative momentum. The
charge density p is measured by —,

' [u, u].
In fact the fermionic formulation is equivalent to the

= —lnm (x —(e) —
—,
' ix. (30b)

The first equality in (30b) exhibits the fact that ImC(x)
is determined by the commutator (21) of (e, while the
second puts into evidence the "ie" ultraviolet regulariza-

!
tion needed in the half-line integral (30a). Repeated use
of the re-normal-ordering formulas

ie(x) iet(y) iet(y) ie(x)e —(e(x), e (y)l —&m(x &&)eie (y)eie(x)

ie(x) —ie)(y) —ie'(y) ie(x) (e(x)e~(y)1 ,[. ( )] —) —iet(y) ie(x) (31)

allows deduction of the following:

I. For x~y, u and u are anticommutating variables.

II. (0! [u(x), u(y)]! 0) =0, (0![ut(x), u(y)]! 0) =8(x —y).

III. —,
' [ut(x+ —,

'
)1),u(x —

—,
' q)]+ —' tut(x —

—,
' il), u(x+ —,

' q)] =(2x) 'i'Z(x)+O(rl).

IV. —,
' i[u (x+ —,

' g)u'(x —
—,
'

r/) —ut'(x —
—,
' g)u "(x+ —,

' g)] =(4') '[(rt+iE) +()I —iE) ]+ —,':X:+O(ri).

Results I and II show that (26) and (29) are valid rep-
resentations of fermions by bosons i)) or Z, while the
remaining two results imply that the Hamiltonian Hw
(2S) for the Fermi field u, when normal ordered, coin-
cides with the normal-ordered Hamiltonian H for the
Bose field Z or p. This follows from III which in the lim-
it g 0 expresses the fermion charge density p as

! (2n) 'i Z, and then the Sugawara-Sommerfield con-
struction equates the respective Hamiltonians. Alterna-
tively IV gives the result directly.

From III, we also deduce that Z is a charged-density
soliton, and its excitations are charge-neutral pairs of
elementary fermionic excitations.
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L = —,
'

q;C;~q~
—V(q), (A I)

where C is a constant matrix which may be taken anti-
symmetric, since a symmetric part leads to a total
derivative in L. We also take C to possess an inverse, so

The conclusion is that a single self-dual Bose field can
be quantized from a local or nonlocal action, which is in-

variant under Poincare transformations that are of un-

conventional form because of the contraction of the
Poincare group. The fermion formulation, which is man-
ifestly Poincare invariant, exposes the elementary excita-
tions as fermionic, and accounts for the necessary nonlo-
cality of the composite bosons: They are now seen as
charge-density solitons. Moreover, we conclude that the
minimal self-dual field is the Majorana-Weyl fermion,
also described by (22), (24), and (25), but with Hermi-
tean field u =u. It is not known whether this single
charge-neutral excitation has a bosonic formulation. If
it does, presumably a much more severe nonlocality than
that of I or p is involved.
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Appendix. —We review the quantization of a first-
order particle Lagrangean,

that L is nonsingular. The equation of motion reads

q; =C„' t) V(q)/Bq, . (A2)

Commutation relations are defined to reproduce (A2)
from the Hamiltonian, which here is V. Hamiltonian
equations of motion

q; =i [H, q, ] =i [V(q), q;]

= [r)V(q)/r)qi]i [qi, q; ]

coincide with (A2) provided

[q;, q, ] =iC„'.

(A3)

(A4)

The extension to boson and fermion field theories is obvi-
ous and justifies the commutators in the text.
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