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Lower Critical Dimension for the Random-Field Ising Model
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We show that the Ising model in three dimensions with a small random magnetic field has two phases
at low temperatures, i.e., that its lower critical dimension is at most 2. This is shown by our devising an
exact renormalization-group flow which takes the theory to the zero-temperature zero-field fixed point.
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The random-field Ising model (RFIM)!' has been in-
troduced to describe several physical systems, e.g., dilute
anisotropic antiferromagnets in a uniform field. Since
the seminal work of Imry and Ma,? a (sometimes in-
tense) discussion has been going on in the literature
about the lower critical dimension d; of this model. d, is
the dimension above which there is an ordered phase at
low temperatures. We outline here a rigorous proof (for
full details, see Bricmont and Kupiainen?) of d;, <2, i.c.,
we show that, in d = 3 dimensions, there are two ordered
phases at low temperature and small disorder. In other
words, the Ising phase transition is stable with respect to
a small random perturbation.

The main heuristic arguments in favor of d; =2 were
given by Imry and Ma and were put on a more solid
basis by Fisher, Frohlich, and Spencer* and Chalker.®
Subsequently, Imbrie® proved that, if d =3, the ground
state is ordered with probability 1, which gave very
strong support to the conjecture d; =2. However, some
doubts still subsisted as to whether there is ordering at
finite temperature in d =3 dimensions. Indeed, one of
the arguments leading to d; =3 was based on the ideas of
Parisi and Sourlas on dimensional reduction.”® This
predicts that a random system in d dimensions behaves
like the corresponding deterministic one in d —2 dimen-
sions. However, for d =1, the Ising model is ordered at
zero temperature, but not at any nonzero 7. Our result
rules out a similar behavior for the d =3 RFIM. Indeed,
our analysis shows that, unlike in the one-dimensional Is-
ing model, the 7 here is an irrelevant variable.

Another line of thought that supported the (wrong)
conjecture d; =3 was based on an estimate of the size of
the fluctuations of an interface separating the + and the
— phases. This estimate was derived from a 5 —d expan-
sion, whose results were also the subject of some contro-
versy. Depending on how this expansion was defined, the
width of the interface of size L was found to diverge
as 10712 f 6=d)/3 gL ac13-16 | (5=d)/2.

We cannot completely resolve this controversy, but we

can certainly rule out (5—d)/2 for d =3. Indeed, in
d =3 dimensions, this law means that the interface
diverges like its length, which is akin to say that there is
no phase transition. It is possible that an extension of
our methods would actually give L?? as an upper bound
for this divergence, but we have not pursued this. On the
other hand, for d = 4, it should be rather simple (but we
have not checked the details) to prove that the interface
does not diverge at all, at low T and small disorder. It
would be similar to the deterministic model in d = 3 di-
mensions (we note that, as far as the lower critical di-
mensions are concerned, the random model is analogous
to the deterministic one in d —1 rather than d —2 di-
mensions). However, for d =4, the (5—d)/3 power law
may well be correct, as it was meant to be, above the
roughening transition.

We next turn to the precise results. At each site of Z*3
we have an Ising spin, and the Hamiltonian is

H=-Y(0y0,—1)—Y hyoy, QD)

where the first sum runs over nearest neighbors, and A,
are Gaussian independent, identically distributed ran-
dom variables, of mean zero and variance €2 (our argu-
ments can be extended to more general distributions).
Let +,— denote the distributions obtained as thermo-
dynamical limits of Gibbs distributions in finite volumes
with as boundary conditions all spins + or — (these exist
for any realizations of the ). Then if 7 and €2 are
small enough, and d = 3,

(o) T=x14+0( 9, )
with probability 1 —e ~V€ From this, one obtains easily

probability-1 statements. For example, the 4 average of
the magnetization satisfies

mi=t1+0( P+e ™),
and, by ergodicity,

m= lim (1/A) Y (o)
A—~Z3 x
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with probability 1. Thus, there are, as in the determinis-
tic model at A =0, two distinct phases.

We will now give some ideas of the proof. It is based
on the Peierls method of contours combined with a re-
cent renormalization-group (RG) theory of first-order
phase transitions.'® Let us recall first the low-
temperature contour representation. Choose a boundary
condition. Then each spin configuration is in one-to-one
correspondence with a family of contours 7y, i.e., y are
closed surfaces separating + and — spins. Each y carries
a weight p(y)=e ~Bl7l and the partition function is
given by e#"V) 7 with

Z=% IT, (e, (3)

where we separated the (¢=0) ground-state energy and
used notation (A, V)=Y o, h,. V_ is the region of
minus spins determined by {y} and H = —2h.

If 7=0, the convergence of the sum is standard, the
entropy of a contour being e@U7D For h=0, the field
enclosed by a contour may give an ¢?“°'” contribution
which, for large enough y, will dominate p(y). This, of
course, happens if there is a large set of A of the wrong
sign, forcing o to the false (=) vacuum, and so creating
a contour.

Imry and Ma noted that this should be quite improb-
able: e.g., for a cubic contour of volume voly=L3, the
field H(y) =[H,Int(y)], being a sum of L* independent
random variables, has variance L 3¢? and thus

Prob[H(y) > | y|]~exp[—O(L/e?)],

since |y|=L?2 Thus the dangerous contours become
more unlikely the larger they are.

This argument has two well-known problems. The
first is that there are e?“” contours of size |y| =L?2,
and this number dominates the above probability. This
problem was solved in Refs. 4 and 5 with use of a
coarse-graining argument. The second problem is that
the Imry-Ma argument ignores the possibility of con-
tours within the contour we are studying. This is serious,
since we wish to show the unlikeliness of contours and
should not assume it. Of course, such contours should
renormalize the field within ¥, and we should try to show
that the renormalized field remains essentially the same
as the original one.

Since the contours occur on all length scales, a multi-
scale renormalization-group analysis presents itself natu-
rally. As usual, our renormalization-group transforma-
tion (RGT) consists of two steps. First, one integrates
out the short-distance fluctuations, i.e., small contours,
and then rescales and relabels everything in order to get
a new system, almost of the form of the original one, but
with new (effective) parameters. Iteration of the RGT
then produces a flow of the effective parameters.

Thus, let us “sum out” of (3) contours of linear size
= L, an arbitrary parameter —1. However, we will do
this only in regions of the lattice where the field is small

1830

enough not to dominate the contour activity. We define
the large-field region D ={x: |H,| > &}. Then, provided
that & is small, we may compute the free energies F = of
the small contours outside D in the * seas determined
by the large contours by a convergent low-temperature
expansion. F can be interpreted as a contribution to a
new effective 4 produced by the small contours:

F*=Y 6h*,

where the 64 are almost-local functions of the H, bound-
ed by O(e ~#).

The second part of the RGT consists of regrouping the
large contours on a blocked lattice so as to produce again
upon rescaling distances a system with contours on all
scales, only with a renormalized field and activities.
Cover the lattice with disjoint cubes of side L. Given a
family of contours I'={y,}, we block them on scale L.
i.e., we define the new (blocked) contours as connected
components of the set of L-cubes intersected by I' and D.
Observe that we include the large-field region into the
contours. This is done mostly for convenience. The new
contours have an activity p'(y') which is just the sum of
the activities of the old contours, and the parts of D,
which produce y' under blocking. The new contours live
on the unit lattice again.

The renormalized field H' is

H{=L7*Y (H,+5h~—5h"), (4)

with y in the L3 block centered at Lx. The peculiar scal-
ing dimension of H will be explained below. The upshot
of these manipulations is that Z may be written as
PRI 71 (we pulled out the renormalization of the
ground-state energy due to small contours) with

Z'=Z{yr]Hrvp’()/')é’p’(Hl‘V_), (5)
where the renormalized B is
p'=L°p

[actually, (5) should also contain a small interaction be-
tween the contours, but this is left out from the present
qualitative discussion].

The renormalized partition function is of the same
form as the original one which we started with; thus we
may iterate the above procedure. Note that the new field
H' may be as large as LS and upon iteration would even-
tually dominate even the small contours. Thus we define
the new large-field region D' by adding to the one ob-
tained by blocking D the region where H' is bigger than
6, and repeat the above procedure.

How will the activities p’' and the distribution of the
renormalization field H' flow? Consider H'. We started
with independent H,’s. Without the 4 F in (4), H'is a
sum of L? independent random variables and thus has
variance L3L “%¢>=L ~'¢2 The correction 8k * is
O(e “P) and almost local. One easily shows that H'
have variance L ~'e?24+0(e ~#) and are almost indepen-
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dent. Thus the small contours produce a negligible con-
tribution to the “‘no contours within contours” picture,
and the variance of the random field is an irrelevant vari-
able.

Turning to the flow of p’, we first note that, even ig-
noring D, the new contours can be quite different from
what one usually means by a contour. In general, they
need not necessarily flip the signs (e.g., block two nearby
contours together) or have an interior (block a long thin
contour). However, in order to iterate the RGT, we
need only to have a bound for the small contours which
dominates the small H in their interior. So the following
bound, which will be proven inductively, will be sufficient
for the activities:

p(y) <exp|—Blolnty| =Bl ADI+8 X Nl
xe€yND

(6)

with ﬂ,ﬂ- running as
By =L*"B, B.=L"B.

It is easy to understand the various parts in (6). The
boundary of the interior of a contour, dlnty, is a two-
dimensional region and thus scales upon blocking as L°.
This explains 8 and our choice of the scaling in (4): We
wanted to have the same B in front of the geometrical
factor and of the H. The one-dimensional parts of the
contour scale as L (since the contours are connected).
This explains [} (note that on D we need not have any
contour strength).

N is an upper bound on the contributions from the D
region, i.e., all the large H™'s collected during the itera-
tion. Obviously after the first step, Ny =L ~2Y |h,|,
with y in the block of Lx, will do. And iteratively,

Ni=L 7 :Y N, +|H{|x(H]),

where ¥ is 1 if | H'| > & and 0 otherwise.

We have chosen so far to ignore the renormalization of
the large fields altogether. This cannot work as such.
Even an initial D consisting of a single point would upon
blocking comprise eventually the full volume of the box
and we obviously would lose all control of the system.
To see what to do, consider the physical effect of a large
field: It may force a spin to be in the direction opposite
to the global magnetization induced by the boundary
condition. That is, it may create contours. However,
they can be created only up to a certain length scale de-
pending on the size of the large field. For example, if
h,=L* on the first scale and all the fields nearby are
small on all scales, we may remove this 4 after k steps
from D, since any contour that has survived the integra-
tion of the small contours that long must have had, on
the original scale, a size at least L* and thus cannot be
dominated by this large field. This procedure may be
formulated in terms of the N variables; as NV, is small

enough such an x is removed from D, i.e., we exponen-
tiate small contours comprising this point too. The con-
tributions of the small contours including such N’s to the
H'of (4) are again negligible.

The RGT we have outlined above is defined for an ar-
bitrary h configuration. If we want to prove properties
of magnetization, etc., we need to know that the D re-
gions, where we have very little control on how the ac-
tivities behave, are very improbable. This amounts to
showing that in the large field region, too, the random
field tends to the zero-variance fixed point. In fact, the
probability of there being an /V at all at any scale is ex-
tremely small: First, note that the probability of
| H| > & is e %< and becomes smaller upon iteration,
since € runs. We prove that for N > 1, say,

Prob(N, > N) <e ~N/€ (7)

(with the running €).

To summarize, the RG takes our model upon iteration
to the zero-temperature zero-field fixed point. The result
for the magnetization is now easy. Consider (o), and
the h event Ng =0 for all k, i.e., no large effective fields
at zero on any scale. With use of (7) it can be shown
that this has probability 1—Y,expl—0(1/ef)]1=1
—e¢ "¢ Then we just need to see whether there are
contours at any scale k around zero, which has weight
Zke_ﬂ* (more formally, the o insertion renormalizes
additively by e oWy Equation (2) follows.

An interesting open problem concerns the d =2 model.
It is generally expected that an arbitrary small disorder
destroys the phase transition, i.e., there is a unique phase
for a typical random field. When analyzed to leading or-
der, our renormalization group shows that the disorder
stays constant. We expect higher orders to drive the sys-
tem towards large disorder, but this appears to be dif-
ficult to prove. We have constructed and solved exactly
a toy model, which is a hierarchical version of the
RFIM. It clearly shows the presence of a spontaneous
magnetization in d = 3 dimensions and its absence in
d =2 dimensions. However, in d =2 dimensions, it ex-
hibits a power-law decay of its correlation functions,
which we believe is an artifact of its hierarchical nature,
although this is also the subject of some controversy.'’
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