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The difterential formulation of the Landau-Fokker-Planck collision integral is developed for the case
of relativistic electromagnetic interactions.
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Kinetic theory is founded upon the Boltzmann equa-
tion, which is a conservation equation for the phase-
space distribution function of each species in an ensem-
ble of interacting particles. For the case of Coulomb in-
teractions, Landau' expressed the collision term in the
Fokker-Planck form. This mixed integro-differential
representation was extended to relativistic electromag-
netic interactions by Beliaev and Budker. For the non-
relativistic case, it was shown by Rosenbluth, Mac-
Donald, and Judd and by Trubnikov that the integrals
appearing in the collision term can be expressed in terms
of the solution of a pair of differential equations. The
present work extends that formulation to the relativistic
collision integral. With use of an expansion in spherical
harmonics, the relativistic dift'erential formulation is then

applied to calculate the scattering and slowing down of
fast particles in a relativistic equilibrium background
plasma. Our work is relevant to the study of high-
temperature plasma in fusion energy research and in as-
trophysics.

In the work of Landau' and that of Beliaev and Bud-
ker, '-' the collision term that occurs on the right-hand
side of the Boltzmann equation for species a and de-
scribes the effect of collisions with species b is written in
the Fokker-Planck form,
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Cob = Dab. F~bf
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in which the coefficients D b and F,b are defined by

D,b(u) =, InA, b U(u, u')fb(u')d'u',
8 zeom,-
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D(u) = Jt U(u, u')f(u')d'u',
8~

(3a)

F(u) = —
Jl U(u, u') f(u')d3u'.

u' (3b)

For guidance, let us recall briefly the nonrelativistic
theory. In that case the momentum-to-mass ratios u3,4

Here, f, and fb are the distribution functions for the two
species, u is the ratio of momentum to species mass, q,
and qb are the species charges, m, and mb are the spe-
cies masses, eo is the vacuum dielectric permittivity, and
1 n A, b is the Coulomb logarithm. The kernel U is

specified below. This form of the collision operator is

only approximate because of the introduction of cutoffs
in the collision integral. More accurate operators that
take into account Debye shielding at large impact pa-
rameters and large-angle scattering and quantum effects
at small impact parameters have been derived. The
purpose of this Letter is to present a differential formula-
tion for the integral transforms that occur in Eqs. (2).
To avoid unnecessary clutter we discard the factor that
depends only on the species properties, drop the species
subscript, and consider the transforms

and u' reduce to the velocities v and v', and the colli-
sion kernel is the one given by Landau, ' U = (

~
s

~
I

—ss)/ s ~, where s =v —v'. It may be seen that
U =r) s ~/r)v8v and (t)/r)v') U = —2r) ( s (

'/r)v. To
obtain the differential formulation, these representations
are inserted into Eqs. (3), and the differentiation with

respect to v is moved outside the integration over v'
~

Defining the potentials h(v) = —(I/8x) f ~
s

~ fd v' and

g(v) = —(I/4x) f ~
s

~

'f d v', we have D= —r) h/
Bv &v and F = —Bg/Bv. Furthermore, from 6
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' and 6
~ s~

' = —4+6(s) it follows that h and g
obey the equations Ah =g and kg=f (d, denotes the.

Laplacian with respect to the variable v. ) These equa-
tions provide the differential formulation of the collision
term in the nonrelativistic case.

The Landau collision kernel was obtained in a semirel-
ativistic fashion, assuming Coulomb collisions and rela-
tivistic particle kinematics. It is a good approximation to
the fully relativistic kernel given below provided that

~
v v'

~
&&c, which is true when one of the colliding par-

ticles is nonrelativistic. However, the reduction of the
collision integral to the differential form of Rosenbluth
and Trubnikov relies on the stronger assumptions
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U(u, u') =

in which y=(1+!u! ') '~, y'=(I+ u' ) '~, and r = yy' —u u'. (We set c= 1 in this part of the paper) One finds

! v ~((c and !
v' ((c, and is therefore entirely nonrelativistic. A differential formulation that is exactly equivalent

to the Landau collision integral was given by Franz. "

We turn now to the differential formulation of the relativistic collision integral due to Beliaev and Budker. - ' They
obtained the expression

I

, [(r —1)I —uu —u'u'+r(uu'+u'u)], (4a)
(r —1)' '-

2r -'/y y'. U(u, u') =, (ru —u').
6u' ' (r' —1) ' ' (4b)

Notice that r is the relativistic correction factor for the relative velocity between the two particles (i.e. , for the velocity
of one particle in the rest frame of the other). Conversely, this relative velocity is given by r '(r 2 —1) '~~.

In developing a difTerential formulation for the collision term based on the Beliaev-Budker kernel, it is helpful to
work in terms of relativistically covariant quantities. The expression yy U is equal to the space part of a four-tensor 8'
that depends on the four-vectors u =(y, u) and u' =(y', u'),

W' (u, u') =, ,„[(r —1)g'~ —u'u —u "u ' +r(u'u ' + u "u )],(r- —1)-" (5a)

where g'~ is the metric tensor, with signature —+++.
(r = —u;u" is clearly a four-scalar. ) The tensor W is

symmetric (W'~ = W~') and symmetric in u and u ',

satisfies u; W'~ =0, and satisfies W,' =2r (r —
1 )

Likewise yy'(r)/r)u') U is the space part of the four-
vector V, where

V'(u, u') =, (ru' —u").2r

( '- —1)'" (5b)

If the relativistic difterential formulation is to parallel
most closely the nonrelativistic formulation, then one
should find a representation of the form W'~="iY'~y and
V' = —2g'p, where y and P are four-scalars depending
on u and u', and &'~ and 0' are covariant difTerential
operators acting on the variable u. In the nonrelativistic
limit, y should reduce to ! v —v'! and i' should reduce to

! v —v'! '. It should be possible to transforin y and g

to 6 functions by a sequence of second-order diff'erential

operators. The potentials would be defined as

!
h = —(1/g~) f(yf/y')d u

' and g = —(1/4~) f (yf/y')
xd u '; these expressions define four-scalars (cf. Ref. 5).
The diff'erential equations satisfied by h and g follow im-
mediately from those satisfied by y and p. Finally, D
would be obtained as the space part of —

y
' &'~h and F

as the space part of —
y '0'g. In fact, it will turn out

that the relativistic formulation has to be somewhat
more complicated, but not fundamentally difTerent froni
the outline just sketched.

A function of the four-vectors u and u' that is a four-
scalar must be a function of r = —u. u

' alone. The form
of the difTerential operators 'iV'~ and 0' is restricted be-
cause these should be interior operators on the surface
u = —

1 in four-space. In addition, it is required that
"iV'~=A'~' and u, &'~=0. Under those restrictions it is

found that the most general form of iV'~ and 0', up to a
rnultiplicative constant, is & '-'E =X' Z+ a(g' + u'u~)Z
and g'i'=%"I+Pu'Z. Here, a and P are arbitrary con-
stants and

~'~g=(g' +u u )(g~'+u~u )Q p/Qu" Qu +(g'~+u'u~)u"'(Ig/()u

/i"Z =(g'"+ u'u") r)Z/r)u"

(6a)

The spatial part of L'~E is LE and that of A''E is KE, where

LX= y
—v

6 E 6X
BV BV BV

9ELE= y
l9V

BE
BV

(7b)

in which v =u/y and r)/Bv = y(I+uu) r)/rlu If X is a. function of r alone then

d E dX(ru' —u ")(ru' —u ') + r (g"+ u'u'),
dr dr

and R'Z=(dZ/dr)(ru' —u"). One is thereby led to the representations

W' =(X' +g' +u'u )(r —1)' —(X' —g' —u'u )[rcosh 'r —(r —1)' ],
V' = —2%"[r(r —1) '~ —cosh 'r].

(8a)

(gb)
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These representations for 8 and V are only suitable for constructing a diN'erential formulation of the collision term if
the functions that occur on the right-hand sides can be reduced to 8 functions by some sequence of differential opera-
tors. For that purpose the contraction L =L,' is needed; in terms of the three-space variables it is

l9 z Bz
LZ = (I+uu): + 3u.

t)u tlu flu

If Z is a function of r alone, then LZ = (r —1) x (d Z/dr ) + 3r(dX/dr) away from r =1; at r =1 (or u =u') there may
be a singularity. Specifically, it is found that

L[r(r —1) ' ] = —4/rye'(u —u'), [L+1][(r —1) '/ ] = —4xy6(u —u'),

I (cosh
—Ir) 2r(r2 I )

—)/2 [L 3](r2 1) i ~=2(r2 I }—i/2

[L —3] [r cosh 'r —(r —1) ' ] =4(r 2 —I ) '

(Iob)

(ioc)

(ioe)

These potentials satisfy the differential equations

[L+1]ho=f, [L 3]hi =ho, [L 3]h2=hi, Lgo=f, Lgi =go.

The explicit form of the differential representation of Eqs. (3) based on the Beliaev-Budker collision kernel follows:
The potentials are

ho = —(I/4/r)„(r —1) '/ [f(u')/y'] d'u',

h
1

= —(I/8')g" (r' —I ) '/'[f(u')/y'] d u',
f

hz = —(I/32/r) ' [r cosh 'r —(r —1) '/ ] [f(u')/y'] d u',

go= —(I/O/r) J r(r —1) '/ [f(u')/y']d u',
f

gi = —(I/8n')„' cosh 'r[f(u')/y'] d u'.

Finally one obtains 0 and F as

D(u) = —
y '[L+I+uu]hi+4y '[L —I —uu]h2,

F(u) = —
y 'K(go —2gi ).

(i2a)

(i2b)

Equations (11)-(12),together with the definitions Eqs. (7) and (9), provide the differential formulation in the relativ-
istic case.

In order to proceed further analytically, it is useful to decompose the distribution function and the potentials in
spherical harmonics, e.g. ,

f(u, 8, y) = g g f„(u)P„(cos8)exp (imp).
n=0 rn= —n

(i3)

Here u = iud (different from the convention used earlier), 0 is the polar angle, and p is the azimuthal angle. The
equation [L —a]g =f is equivalent to the system of separated equations [L„—a]g„=f„,where

[L„—a]y =(1+u )d y/du +(2u '+3u)dy/du —[n(n+1)/u +a]y. (i4)

After the change of variable x =sinh 'u and the change of unknown z =(sinhx) "y, then the equation [L„—a]y =iv
transforms to [X)„—a ]z =(sinhx) "iv, where a =a+1 and

[2)„—a ]z =d z/dx +2(n+1)(cothx)dz/dx+ [(n+ I) —a ]z. (is)
The solution to the homogeneous equation [2)„—a ]z
=0 is required in order to construct a Green's function
for the problem. To obtain this solution we note the fol-
lowing recurrence: If z„ i, solves U)„ i

—a ]z =0,
then z„,=(sinhx) '(d/dx)z„ 1, solves [2)„—a ]z
=0. Furthermore, for n= —

1 the homogeneous equa-
tion is trivial to solve. However, the recurrence breaks
down in the case that a is an integer. If a=n, then
z„ 1, =1 solves [2)„ i

—a ]z =0, and differentiation

produces the null solution to [2)„—a ]z =0. The re-
currence must then be restarted from the general solu-
tion to [X)„—n ]z =0, which is

pXz„„=(sinhx) " ' Ci+ C2J (sinhx ') 2"dx '
0

The integral that occurs here can be expressed in closed
form.
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The Green's function allows us to reduce the separated
ordinary diAerential equations to quadrature. An impor-
tant special application for these results is in the treat-
ment of collisions oA an equilibrium background distri-
bution. Assuming that fb is a stationary Maxwellian
with density nb and temperature Tb and that the energy
of the colliding particles greatly exceeds Tb, we obtain

convenient method for calculating the boundary condi-
tions for the potentials.

We are grateful to N. J. Fisch for several enlightening
discussions. This work was supported by the U.S.
Department of Energy under Contract No. DE-AC02-76
CH03073.
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and F„=—(m, t/Tb)D„„. (The other components of D
and F vanish. ) Here we have put the expressions for D
and F into dimensional form as in Eqs. (2), K„ is the
nth-order Bessel function of the second kind, the argu-
ment for the Bessel functions is mbc /Tb, u, b =Tb/mb,
and I,b =nbq, qb InA, b/4treom, The . errors are ex-

ponentially small in u/u, b

To conclude, we have presented a diAerential formula-
tion for the Beliaev-Budker relativistic collision integral.
This permits the rapid numerical evaluation of the col-
lision term. A decomposition into spherical harmonics is

useful in carrying out analytical work. It also provides a
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