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Two-Loop Chiral Anomalies in Open Superstrings
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We partially analyze the two-loop box and hexagon chiral gauge anomalies in D =6 and 10 dimen-
sions for super-Yang-Mills theories. We apply these results to the SO(32) open superstring and show
that the leading gauge anomaly vanishes at two-loop order while the subleading gauge anomalies, the
mixed anomalies, and the subleading chiral gravitational anomalies may all be canceled with appropriate
counterterms. To do this in field theory it is necessary to include a term B(TrF2)2 which is absent at
one-loop order in the zero-slope limit of the SO(32) superstring.
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In D =4 dimensions, renormalizable field theories,
such as Yang-Mills fields coupled to chiral fermions,
may have chiral anomalies. However, the anomaly one
calculates at one-loop order is not corrected in higher or-
ders of perturbation theory, a result first proved by Adler
and Bardeen. '

In closed-string theories, there exist arguments analo-
gous to the Adler-Bardeen (AB) theorem. For example,
in the E8SE8 heterotic theory, since there is modular in-
variance to all orders, anomalies that fail to material-
ize at one-loop order may not appear in higher-loop
(higher-genus) diagrams if they correspond to a break-
down of modular invariance.

In the E8E8 closed-superstring theory, there is only
one diagram to consider at each order in perturbation
theory; but in the SO(32) open-superstring theory, life
is much more complicated. We can also expect no gen-
eralized AB argument of the type that exists for the
E8SE8 superstring, since there is no full modular invar-
iance for the open superstring. If there is an AB
theorem, it must involve other arguments or be of the
more general type discussed above.

We begin by summarizing the two-loop open-string di-
agrams that may contribute to chiral anomalies. Let us
split these into two classes: (A) diagrams with only
open-string internal propagators, and (B) diagrams with
closed-string internal propagators. We will be most in-
terested in the hexagon diagrams with six external bo-
sonic legs. (It is both useful and easier to consider the
box diagram first, which we do when we come to the cal-
culations. )

Class (A) diagrams can all be represented as disks
with two holes cut out. A diagram of this topology can
be deformed into a three open-string vertex with three
open strings all running to a second three open-string
vertex. To make the hexagon, one then attaches the six

external legs in all possible combinations to the three
internal string propagators. There are seven such possi-
bilities, as we will summarize below. Finally, once the
external legs are attached, one must sum over all possible
twists in the internal propagators.

The subclasses of diagrams V(AS of class (A) can now
be summarized by the expression

V4S =AH|'AS, ZGS, ,

where i runs over the twists and is the only index that is
summed; a, b, and c are the number of external lines at-
tached to each internal open-string propagator. We have
factored out the group-theory pieces H(AS factors. We
have calculated them for all seven (four) subclasses of
class (A) diagrams for the hexagon (box) including all
possible twists.

Class (B) diagrams can contain at most one internal
closed string (and no holes) if they are to be of the same
order in perturbation theory as class (A). This is be-
cause closed-string diagrams carry a factor of x, while
class (A) diagrams have a factor g (g for each three
open-string vertex) beyond the one-loop result. But4 in

type-I superstring theory, x~g . The possibilities for
class (B) can also be understood by our considering a
disk with two holes. If a tube (closed string) is plugged
into one hole on the top of the disk, then a class (B) dia-
gram is made by either our plugging the other end of the
tube into the other hole on the top of' the disk (making a
pot lid) or by our stretching the tube around and plug-
ging it into the second hole from the bottom of the disk.
The pot lid is orientable (0); the second case is
nonorientable (A'). (The second connection of the tube
can also be thought of as being connected at a cross cap
to make a "Klein pot lid. ") Finally, in both cases, one
attaches the external lines to the outside rim of the disk.
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We call the two contributions V~ and Vq w here
Va = HaZa

At the one-loop level, the Green -Schwarz mechanism
depends on the inclusion of an antisymmetric tensor field

B„,in the spectrum; then the tree diagram with an inter-
n al 8 line connecting vertices with two and four external
gauge propagators can cancel the nonleading gauge
anomaly coming from (TrF ) (TrF ). Since 8„, is in

the supergravity m ultiplet wh ich arises from the closed-
string sector of the superst rings, if one cuts this tree
graph the closed loop is apparent, and so it is not surpris-
ing that the contribution it gives is of the same order as
the other one-loop anomaly graphs.

As we will see, at two-loop order the coefficient of the
leading trF term in the hexagon anomaly cannot be
zero for any N unless an antisym metric B field is includ-
ed. This inclusion of class (B) diagrams allows the can-
cellation.

%'e will now summarize the calculations of the various
H factors. We consider class (B) first since it is simpler.

Both class (B) diagrams contribute a factor of
N trk" (x' N trF", where n is the number of external gauge
bosons, here either 4 or 6; N is the dimension of the fun-
darnental irreducible representation (irrep) 4.I of
SO(N); the trace tr is symmetrized and over the funda-
mental irrep. (In the sequel traces, Tr will be under-
stood to be symmetrized but over the adjoint irrep. ) It is
easy to see where the above factors come from. Again,
consider a flat disk with two holes and n external lines all
attached to the outside boundary. Following "quark"
lines, on the outside there is just the trace trX ". Since
there are no external l ines attached to the internal holes,
each hole carries a Kronecker 6 function in the quark
(i.e. , fundamental) irrep. Now, stretching the holes out
and connecting them, one gets 6b 6, =6, =N. The
quarks running around the boundary of the holes must
match before we can connect them, i.e., we get N not N
as can happen for class (A) diagrams.

For class (A) diagrams we must calculate traces of the
for rn

TABLE I. Two-loop O(N) box anomaly coefficients in six
dimensions.

H abc

H ('A I

H ('A')

HHI
H (A')

H (A)

H (q )

trX 4

2(N —2) (N —8)
(N —4) (N —8)
N~ —10N + 32

—8(N —4)
4N —50N + 1 28

2N

6(N -2)
3 (N —4 )
3N —

1 4
4(N —4)

8 {2N—7)
0

H (box ) 8(2N —7)

cause V(AI is a propagator correction for an internal
open string, and V(A) corrects an external vertex. (Note
further that H(~ I and H fAI are proportional to the one-
loop anomaly. We find a similar result for H fA l and
H (A') below. )

Let us pause a moment to recall the one-loop hexagon
anomaly result. All type- I chiral superstring theories
in D = 10 have hexagon anomalies for SO(N) gauge
groups (gauge part only)

2 (I„,"~ = (N —32) trF + I 5 trF trF (4)

where F is in the fundamental irrep of SO(N). The
leading anomaly piece obviously vanishes at N =32.
(These anomalies are fatal for other values of N )What.
is not so obvious is that the non leading anomaly can also
be removed by the clever trick of adding a piece 8TrF
(added to the supergravity theory but generated by
string theory) to the Lagrangean. The nonleading gravi-
ty and mixed anomalies are eliminated in a similar
fashion. We now return to two loops.

The class (A) contributions to the two-loop hexagon
anomaly give the polynomial factors in N summarized in
Table II. Class (B) terms and the total H "'" are also
given.

The coefficient of the trk —trF term factors. Thus

T (A"'A" A' A "A'A"" A'A'A' " A'") (2)

for all j, k ~ n. Again n is the number of external legs.
Here A is in the adjoint irrep of SO(N);

(3)

The traces (2) are straightforward with use of diagram-
matic techniques. For the box diagram we find the re-
sults given in Table I. The leading trX term does not
vanish for any N for either class (A) or (B) or contribu-
tions 0~A) or H ~q) separately, but does for the sum 0
when N = 8 (the same value of N for which the leading
one-loop anomaly canceled. The other solution at N =4
must be irrelevant, since this choice for N would be one-
loop anomalous). It is true that the trX terms for H(AO)

and H (A) both vanish for N =8. This is apparently be-

trk trX (trX )

HIA i

HM)
H N)
H ('x'I

H(8
HQ)
H(A)
H (g)

2(N —2) (N —32)
(N —4) (N —32)
N2 —22N + 1 28
N2 —18N+ 128
—20N + 1 28

14N+ 128
12N+ 128

5N —
1 90N +896

2N

30(N —2)
1 5(N —4)
9N —74
6(N —1 3)
2(5N —38)
7N —82
6(N —14)
83N —5 14
0

0
0
6
9
6
9

1 0
40

0

H H(A)+H(B) (5N —28)(N —32) 83N —514 40

TABLE ll. Two-loop O(N) hexagon anomaly coefficients in

ten dimensions.
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we conclude that the leading gauge anomaly vanishes for
an SO(32) gauge group. It is also evident that B„,fields
are needed if this leading anomaly coefficient at two
loops is to vanish for SO(32).

The group factor 40(trk ) can be generated by an

anomaly =(trF ) . Such a term cannot appear in one-

loop group traces of adjoints but can always appear in

two and higher loops. This is the only new tensor invari-
ant available beyond one-loop order in D =10. To cancel
this nonleading term, a further counterterm of the form
B(trF ) needs to be introduced. A sketch of the com-

I|2=a
~
trF trF + b ~

(trF ) +a. trR trR + b2(trR-') '

piete two-loop counterterms is given at the end.
A final remark concerning H "'" is in order. In anal-

ogy with previous work in string theory, we assume all
seven class (A) and the two class (B) diagrams must be
added with equal weight to preserve unitarity. It is

gratifying that when this is done in D dimensions we get
precisely the same (N —2 ) factor to cancel the lead-
ing gauge anomaly as was obtained at one loop.

Assuming that the leading gravitational anomaly can-
cels at one loop and fixing %=32 for simplicity, we find

!
(up to an overall normalization) the 12 form, associated
with the total two-loop anomaly, must take the form

+aqtrR tr +b3trR (trF ) +a4trF trR +b4trF (trR ), (5)

with ai =2142 and b~ =40. The consistent anomaly is

( =J~llo,

where li2=dli~ and alii =dlio have been used. One must then find a counterterm 5, to add to the action such that
6'6, = —G, otherwise the theory is anomalous. The choice of a minimal form,

S,= JI [a~BtrF +btB(trF ) +a2BtrR +b2B(trR ) +ABtrF trR —Ardl 3rop3trR —druto3ro~o3trF~], (7)

gives the required cancellation provided that, in Eq. (5),

a~ =a3,

a2=aq,

A=(b3 —b() =(bg —bp).

(8a)

(8b)

(8c)

Since we have computed only a& and b~, we have made
only a consistency check. The fact that b&&0 at two
loops (recall b

~
=0 at one loop) the counterterm

B(trF ) appears first only at this order. A similar new

term is likely to appear in the O(32) heterotic string,
presumably from a diAerent part of the integration re-

gion for the double torus. For E(8)SE(8), there is a

proportionality between trF and (trF ) ~, so the distinc-
tion between counterterms does not exist.

In summary, we have shown there exists no leading
gauge anomaly at two-loop order for the SO(32) open
superstring and that a new counterterm B(trF ) must
be added to cancel the anomaly coming from the
twelve-form (trF ) ' for which we have calculated the
nonvanishing coefficient at two loops. A full analysis of
the field-theory part of the two-loop anomalies will un-

doubtedly be quite difficult but would certainly help clar-
ify the details of the SO(32) open superstring.
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