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It is shown that all the nonrenormalizable terms in the eAective superpotential for any Abelian sym-
metric orbifold with at least (0,2) world-sheet supersymmetry as well as any blown-up (2,2) orbifold are
exponentially suppressed by the size R of the compactified space, i.e. , ~exp( —R2/a').

PACS n Um hers: 1 1.17.+y

Orbifold compactifications' of the superstring theo-
ries are especially attractive because interactions on orbi-
folds can be calculated exactly at the string tree level.
Thus all the parameters of the tree-level efective super-
potential can be determined exactly, i.e., including con-
tributions which are perturbative as well as nonperturba-

tive in the ratio Ja'/R, where a' is the string tension and
R is the radius of the orbifold. (For example, the effects
of world-sheet instantons are automatically incorporat-
ed. )

The left-right [(2,2)] symmetric orbifolds, i.e., those
with spin and gauge connections identified, can also be
blown up

'' into the corresponding Calabi-Yau mani-
folds. This is achieved by giving nonzero vacuum expec-
tation values to the massless scalar fields associated with
the orbifold singularities, i.e. , the so-called blowing-up
modes, whose potential is flat. Although perturbative in

the blowing-up vacuum expectation values, the method
enables one to obtain explicit values for parameters of
the blown-up orbifolds, thus giving exact results at the
string tree level.

Calculations ' for the mass spectrum and Yukawa
couplings, i.e. , the terms of dimension (4, for the
blown-up orbifolds agree with the general results of the
world-sheet instanton calculations. In particular, all
the matter singlets acquire masses which are proportion-
al to exp( —R /a') while 27 and 27* of E6 do not pair
up. Also, all the "moduli" remain massless as expected.
On the other hand, Yukawa couplings of the form

h;~, 27;27 1, for any pair (i,j) are nonvanishing for
some a while Yukawa couplings of the type h;~k27;
x 27~27k are nonzero in general. Some of these Yukawa
couplings are nonzero already in the field-theory limit,
i.e. , a'/R 0, while some become nonzero due to non-
perturbative eA ects. The non renormalizable terms
(2727*) (with K) 2) in the effective superpotential
for Z~ orbifolds and their blown-up versions have been
studied in Ref. 11. It was observed that for a large class
of orbifolds and their blown-up versions all such terms
are absent, thus questioning the mechanism' for gen-
erating an intermediate scale for such compactifications.

In this note I show that for all Abelian symmetric or-

Here [Vtt(z)] t is the corresponding vertex operator in

the —1 picture and

TF =TF (X X y, t7t )+ )At.u ttu (2)

is the world-sheet-supersymmetry generator ' —the
stress-energy tensor. Here L and y are the string boson-
ic and fermionic coordinates, respectively; the indices
(i,i) =(1,2, 3) and p =(1,2, 3,4) denote the three com-
plex internal and the four space-time dimensions, respec-
tively. Partial derivatives are with respect to the right-
moving world-sheet coordinate z. It is crucial that for an
orbifold model, TF"' takes the explicit form

T tnt Q~l y& + Q~& ~t (3)

The right-moving N=2 superalgebra of (0,2) as well as
(2,2) models incorporates a U(1), current algebra, gen-
erated by J, —i J3rlH„H, (z) is a free .right-moving
scalar field. Actually for orbifolds, U(1)„world-sheet
symmetry of the r sector is enlarged to [U(1)U(1)
SU(1)]„. Thus, instead of one conserved charge

bifolds with at least (0,2) world-sheet supersymmetry as
well as blown-up (2,2) orbifolds, all the nonrenormaliz
able terms in the eAective potential are, at most, ex-
ponentially damped by the size of the compactified
space, i.e. , ~exp( —R /a'). Here R is the radius of the
compactified space and a' is the string tension.

All such orbifolds possess the local conformal invari-
ance' ' in the right-moving (r) sector. One can thus
use the picture-changing formalism, with vertices having
diferent ghost numbers for the bosonized right-moving
superconformal ghost in diA'erent "pictures. "' ' Tree-
level amplitudes involve collections of vertices such that
the total ghost number p equals —2. ' The simplest
form of the vertex operator for a space-time fermion is
the —

—,
' picture, while that for a space-time boson is the

—1 picture. The picture-changing formalism enables
one to obtain vertices in other pictures. For example, the
vertex for a space-time boson in the 0 picture is obtained
in the following way':

[Vtt(z)]p = lim {exp(p) TF(w) [Vtt(z)]
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H„=g;=, (H; )„, there are three conserved charges, (H ~)„, (Hq)„, and (Hq)„which are classified' for all the Z~ orbi-
folds and are related to the matrix of the discrete rotation 0 acting on the three compactified coordinates. (H;),
charges, along with the explicit form of the TF [see Eqs. (2) and (3)], in turn uniquely determine the r sector of the
vertex operator for emission of massless states at the string tree level. For example, in the —

1 and —
—,
' pictures (emis-

sion of a massless boson and massless fermion, respectively, and belonging to the space-time chiral superfield with posi-
tive chiraliry) the r sector of the vertex operators are the following:

(V8) —) exp( —P) @~exp(ik„X"), untwisted sector,

(Vg) —
~
=exp( —P)Q; cr;s; exp(ik„X"), twisted sector,

(VF) —)i2 =exp( —P/2) uQ; exp[ —(H; )„/2] iic exp(ik„X"), twisted sector,

(VF) —~iq =exp( —(fi/2)uQ;cr; exp[ —(H, ),/ 2]s;e xp(i k„X), twisted sector,

(4a)

(4b)

(sa)

(sb)

y'=exp[i(H, ),],

s) =exp[iki/X(H, ),].
(6a)

(6b)

The three separate charges (H~), should satisfy the con-
straint that H„=g (H~), =g kj/N= l.

The calculation of parameters of the eAective superpo-
tential in a particular theory reduces to the study of the
corresponding amplitude of the massless states emitted
from the string propagating in this particular back-
ground. It is most convenient to calculate' " the fol-
lowing Yukawa-type n-point function in the orbifold
background:

2 =(VF, VF, Vii, Vg, „). (7)

Here VF. and V~. denote the vertices for the emission of
the massless fermionic and bosonic modes, respectively
[see Eqs. (4)-(6)]. This amplitude enables one to probe
the parameters of the superpotential directly, unlike the
amplitude for n bosons. '

With the explicit form of the vertices (4), (S), and
(1), one can then evaluate the amplitudes in the particu-

L —M —
1 M —

1

cI,X,~(z) = g a'cole(z), 8,X,~(z) = g b'coi~ x(z),

with p, I,i defined as before and u referring to the spinor
of the four uncompactified dimensions. The boson ic
twist fields a; and fermionic twist fields s; take care of
the emission of the massless state from the propagating
string with the twisted boundary conditions for the bo-
sonic X' and the fermionic y' coordinates, respectively.
Fermionic fields are presented in terms of the three bo-
sonic U(1)„charges

!
lar background which must obey selection rules that the
total p charge equals —2 and (H;), charges should be
separately conserved.

It has been shown ' ' ' that in the amplitudes (7)
which probe the terms of the superpotential, only the
terms of (Vii)o with H, =0 contribute, i.e. , only terms
proportional to cIX'y' survive in such amplitudes in order
to conserve the total 0, charge. ' Note that for V
V 1, we have H, = —2, 1, respectively. Then 2 as-
sumes the following form:

A =(V ii2V &i2V ~ Vo ' Vo)

~ (cl~X, . . . )

For the nonrenormalizable terms, i.e., n ~ 4, the ampli-
tude (8) has n —3 ~ 1 vertices in the 0 picture and it is
thus proportional to at least one power of c),X evaluated
in the presence of the twist fields a . ' This part of the
amplitudes can be evaluated by separating the classical
and the quantum part of the solution for c)X's. Namely,

(c),X,. . .),=Z,„g cI,X,i e
B,x„

where c),X,~
denotes the classical solution for tI,X in the

presence of the twist fields cr, S,~

=fd z (tl,X,~ tI,-X,
~

+cI,-X,
~ t),X,~), and Z~„ is the quantum part of the twist

correlation function independent of the size of the
compactified space. Note that in (9) there are no factors
proportional to cI,X~„, since (c),Xq„) =0.

The form of BL,1's is determined as follows

(10)
L —M —

1 M —
1

c);X l(z) = g a'cox-(z), cl;X,~(z) = g b~c7ov Ic(z).
i=1 j=l

Here L is the number of twist fields a; co~ and co~ —~ are determined by the operator-product expansion of BL with
the twist fields. E.g. , cox(z) =z' 'Q~=~(z —zj) ', with g =,k~/IV=M and M= 1, . . . , L —1, and similarly
for co~ Ic(z). The condition on k~ s arises from the point-group selection rules, i.e., Z~ symmetry of interactions. The
coefficients a' (a ) and b~ (bj) are particular linear combinations of the coset vectors v (v) which belong to a class of
lattice vectors. They are determined by the global monodromy conditions ' '; i.e., by choosing L —2 independent
"closed loops" '

y; around which X (X) acquires no phase, but it may be translated by particular coset vectors which
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depend on the type of twist fields which are encircled by
the independent closed loops y;. Note that for the sym-
metric orbifold, i.e. , when the right- and the left-moving
internal coordinates are rotated in the same way, one
sees that cote =cote* (cot'v tc =cotv* z) as well as a'=a'
(b =b' ). So S,~

assumes the form g, ,'a'II t'r' a'

+g~~ btII~&' tcbt, ~here IItc =fd—z co~cote and II~&~

=fd zco~~ ~co~z x- are entries of strictly positive-defi-
nite matrices A~ and Q~ ~, respectively. This in turn
implies

S,~

=0 a'—=0 and bj=0.

ln this case also all c)X,~'s are identically equal to zero
[see Eq. (10)].

Using (10) one sees that in the amplitude (9) the
only terms that survive are exponentially damped,

e ~~v~
—

e
—

I I o ((~yJ~) —
e

— '& 'o
w;th

n & 3.
For the exact string tree-level result, we needed only

the (0,2) world-sheet supersymmetry; thus the result is
valid not only for all the (0,2) Abelian as well as (2,2)
Abelian orbifolds but also for the Calabi-Yau manifolds
obtained by blowing up the (2,2) Abelian orbifolds.
However, the above conclusion need not apply to the
asymmetric orbifolds. ' In this case the global monod-
romy condition may be diA'erent for the left- and the
right-moving sectors. Therefore one can, in principle,
satisfy the constraint S,~

=0, but B,L,~&0 thus making
the amplitude (9) for the nonrenormalizable terms not
exponentially damped.
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One can show by using the Schwartz inequality that
~

Qg ~

~ Blitt'' and similarly for tItv —tc's. The equality sign
applies only when i =i '.
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