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Normal-Metal Aharonov-Bohm Effect in the Presence of a Transverse Electric Field
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The eflects of transverse electric fields on the conductance fluctuations in an Sb loop have been stud-
ied. We show that the electric field can he used to tune the position (or phase) of Aharonov-Bohm oscil-
lations as well as to alter the aperiodic conductance fluctuation patterns. We discuss two mechanisms
which might cause the observed dependence of the fluctuation pattern on transverse electric field. The
first is the electrostatic Aharonov-Bohm eflect, and the second is the spatial shifting of the electron tra-
jectories by the electric field.

PACS numbers: 05.40.+j, 03.65.Bz, 72. 15.6d

As a result of their extreme sensitivity to the phase
coherence of the wave function, magnetoresistance fluc-
tuations' seen in small devices, which are caused by
Aharonov-Bohm eAects among the various electron tra-
jectories in the sample, particularly the oscillations in

metal loops, are proving to be a powerful tool in the
study of electron transport. The large, "universal" val-
ues of the fluctuations seen in metallic samples at low
temperatures have been used to study the phase-
coherence length L& of the electrons, the correlations of
the individual levels in the conductance band, correla-
tions between potential fluctuations in disordered materi-
al, ' the eA'ects of paramagnetic impurities on electron
phase coherence, '' and the eA'ects of ensemble averag-
ing. ' In brief, the Aharonov-Bohm eA'ect is the modula-
tion of the phase of the electron wave functions by elec-
tromagnetic potentials. Usually, attempts to observe
Aharonov-Bohm eA'ects ' rely on the interaction of the
vector potential A with the electron wave function
through the line integral fA ds where s is the path of
the electron. A beam of electrons is split between two
paths and then recombined. Any magnetic flux threaded
between the two paths shifts the relative phase of the
wave functions in the two paths. Because of this interac-
tion with the field, the magnetoresistance of a metal loop
oscillates with period AH =(h/e)/a, where a is the area
enclosed by the loop. In a disordered medium the carrier
trajectories are a random tangle of paths. This random-
ness adds random factors to the resistance fluctuations

which, in turn, change the smooth periodic dependence
to a random speckle pattern which contains local periodi-
city.

The phase of the wave function can also be changed by
the application of an electric field. This electric field
contributes the fourth term in the four-vector product
A„(dx)",and its effects have been studied previously in
electron-beam interference experiments performed in
vacuum. ' This term contains the scalar potential V as-
sociated with transverse electric fields and the time.
It causes a phase shift in the wave function of hp
=feVdt/6 The usual An. satz is to suppose that a sca-
lar potential is in contact with the electron wave function
for some distance along its trajectory and to calculate
the time interval dt from the path length and the Fermi
velocity vF. For a disordered material with no inelastic
scattering, this velocity would be replaced by the drift
velocity. In most practical realizations of metal samples,
however, the drift velocity is so low that the time interval
is set by the phase-coherence time r&. It was recently
proposed that the application of a electric field perpen-
dicular both to the current path and to the magnetic field
would induce such an Aharonov-Bohm oscillation. ' The
prediction from a two-channel model of a loop in the
ballistic regime was that if the transverse electric field
was present between the electron paths, then it could be
used to modulate the Aharanov-Bohm oscillations.

We have designed a simple experimental arrangement
to search for electric-field efI'ects in metal loops. Figure
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FIG. I. (a) Photograph of the Sb loop used in this experi-
ment. The capacitor probes are about 0.8 pm long and about
0.16 pm from the arms of the loop (center to center). (b) The
effect on the Aharonov-Bohm oscillations of a voltage applied
across the capacitor in two ranges of magnetic field. (The
aperiodic fluctuations have been filtered for clarity of display. )

0.3—

cu

0. 1

—0. 1

(b)

0.0 -~

—0.2

0.0 0. 1 0.2 0.3 0.4 0.5

~v (v)

—0.3
0.0 0.2 0.4 0.6 0.8 1.0 1.2

1(a) is a photograph of the device. The loop is 0.82 pm
on a side, and the capacitive probes (left and right) are
0.16 pm from the arms of the loop. All components of
the device were formed in a single processing step on a Si
substrate with conventional electron-beam liftoff technol-
ogy. The device comprises Sb (99.9999% pure) wires
which are approximately square in cross section being
d=0.075 pm thick and wide, and the resistance between
the voltage probes is 136 Q. (The material Sb was
chosen because it yields large phase-coherence lengths
and large resistivity. ) We calculate that the capacitance
between one of the probes and the loop is of the order of
5x10 ' F; the presence of surface charge on the Si
could increase this coupling by 2 or 3 orders of magni-
tude. We emphasize here that it is not obvious that an
externally applied electric field will produce a potential
diA'erence between the left and right arms of the ring. In
fact, for a perfect conductor, it is forbidden by classical
electrostatics. The applied electric field, however, will

certainly aAect the charge distribution on some of the
surfaces of the loop.

The data in Fig. 1(b) clearly demonstrate that the
voltage on the capacitor probes can be used to tune the
positions of the h/e oscillations in the loop. We plot the
h/e resistance oscillations for two selected magnetic field

ranges at 40 mK. The top traces are for zero volt-

age difference across the capacitor probes. The middle
traces demonstrate that after the application of V=0.75
V across the capacitor, the phase of the h/e oscillations
is changed by nearly z, and the bottom traces show that
when the voltage diflerence is returned to zero the h/e

v (v)
FICJ. 2. (a) Magnetoresistance curves recorded at several

values of the applied dc electric field illustrating the shift in the
oscillations and changes in the random components in the con-
ductance fluctuations. The applied voltage is lowest for the top
trace and increments by 0.2 V on each subsequent trace. (b)
The positions of the peaks in (a) as a function of applied volt-

age. The various symbols refer to different peaks in the
magnetoresistance. Inset: The position of the maximum in

C(A, B) calculated after the magnetoresistance curves (8 and
B) have been filtered to remove the aperiodic fluctuations. (c)
The maximum amplitude of the cross-correlation function
C(A, B) as a function of the difference in applied electric field
for the aperiodic fluctuations (solid symbols) and for the h/e
oscillations (open symbols).

oscillations return to their original phase. Notice that in
the two diA'erent magnetic field ranges, the oscillations
shift by slightly diferent amounts.

Upon performing a sequence of such experiments for
various voltages between the capacitor probes, one ob-
tains data which, at least locally, are consistent with the
prediction that the electric field will simply add an extra
phase shift to the oscillations. An altogether typical se-
quence of magnetoresistance traces at different voltages
is shown in Fig. 2(a) to illustrate this behavior. The
traces include aperiodic fluctuations (AF) having an
average amplitude AG[AF] =0.4e2/h and periodic oscil-
lations of amplitude AG[h/e] =0.2e /h. The phase of
the oscillations shifts as the voltage on the capacitor
probes changes. Moreover, the oscillations in a given re-
gion move approximately as a unit; i.e., the entire mag-
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netoresistance curve appears to slide along the field axis
as a unit. This is illustrated in Fig. 2(b), where the rela-
tive positions (referred to the positions at V=1.2 V) of a
few of the local maxima in the magnetoresistance are
plotted as a function of V. The positions of the oscilla-
tions shift smoothly and more or less uniformly with
electric field. This would appear to be evidence that the
transverse electric field adds to the phase of the electrons
in the same way that the magnetic vector potential adds
to them. We emphasize here that the voltage scale in

Fig. 2(b) is very large compared with what we estimate

&g =go(H, V) +g~ (H, V) cos I[2~(H, V)/(h/e)]+ a~

The random factors go, g ~, and Q~ are present in the con-
ductance formula because of the scrambling of the wave
functions caused by the impurity scattering. Not only
does the electric field add to the usual Aharonov-Bohm
phase C(H, V), it also causes random fluctuations in go,
g), and ul.

To illustrate this complexity, we refer again to the se-
quence of magnetoresistances in Fig. 2(a). Not only do
the oscillations shift, but the envelope function g~ and
the random term go also change shape. In addition, the
phase of the oscillations a~ changes randomly at the
nodes in g~. It is not surprising that these terms are ran-
dom functions of electric field since the electric field
should have all the same eA'ects as the magnetic field.
As a result of this random dependence on the electric
field, analysis of the type displayed in Fig. 2(b) cannot
be carried to arbitrary voltage scales because the oscilla-
tions which are being mapped simply disappear as nodes
in g ~

move through the pattern. The random depen-
dence of g~ on V can be illustrated by the calculation of
the cross-correlation function C(A, B) for the magne-
toresistances (the magnetoresistance trace A being
recorded at a given voltage between the capacitor plates
and B recorded at another) and plotting the maximum
amplitude C,.„ofC(A, B) as a function of the
diAerence in applied voltage. Using a digital filter, we
can independently study the aperiodic fluctuations and
the periodic h/e oscillations because the characteristic
frequency scales are we11 separated in our experiment.
These results are displayed in Fig. 2(c) for the h/e and
aperiodic conductance fluctuations separately. For the
aperiodic fluctuations, C,„decays as the voltage dif-
ference increases (C,„=0.5 at AV=0. 7 V) which indi-
cates that the dc electric field also changes go randomly.
It has, therefore, the same eAect on this term that the
magnetic field has: It causes aperiodic fluctuations. A
similar eflect is observed for the h/e oscillations but
C(A, B) decays more quickly with voltage, C,„=0.5 at
AV=0. 35 V. If the only eAect of the electric field had
been to shift the magnetoresistance oscillations along the
magnetic field axis, then instead of decaying monotoni-
cally, the cross-correlation function would have oscillated
about zero with the period AV= V2„. This diAerence be-

for the electrostatic Aharonov-Bohm eff'ect. The voltage
required to phase shift the wave function by 2z is
V2 =2trh/er&=40 pV, which is smaller by 5 orders of
magnitude than the voltage diAerence on the capacitor
plates.

In contrast to the case of electrons propagating freely
in a vacuum where the electric Aharonov-Bohm eA'ect

has been seen previously, ' the conductance fluctuations,
which we measure here, contain several terms which de-
pend critically on the mixture of electron trajectories.
The formula for the conductance g =G/(e /h) contains
fluctuation terms such as

(H, V)j+

tween the half-width for aperiodic fluctuations and the
periodic oscillations is somewhat perplexing. We expect
all of the factors in Eq. (1) to have about the same scale
for their dependences of electric field because the net
phase shift in the wave function is determined by the
time of "contact" between the wave function and the
scalar potential. We note that there is a similar dif-
ference between the characteristic magnetic-flux scale
for h/e oscillations and aperiodic fluctuations with the
former being h/e and the latter =2h/e. The rolloff' of
the correlation does not depend on how the voltage is ap-
plied. If + V/2 (referenced to the circuit which mea-
sures the loop resistance) is applied to the left-hand
probe and —V/2 applied to the right-hand probe, the re-
sulting voltage correlation graph is the same as when all
of the voltage is applied to one probe, and the other
probe is held at ground (the potential of the measure-
ment circuit). If the positions of the cross-correlation
maxima are plotted as a function of the applied dc elec-
tric field, then [see the inset in Fig. 2(b)] on average, the
shift of the oscillations is seen to be zero. This is the re-
sult of the random dependence of a~ on the applied volt-
age. Since this term changes randomly with electric
field, the shift of the oscillations averaged over a wide
range of magnetic field (in this case a range of 2 T or
300h/e through the loop) is washed out. In other words,
the slight dift'erence between the two shifts in Fig. 1(b) is
indicative of the randomness inherent in the speckle pat-
tern. Data in other ranges of magnetic field yield shifts
which are distributed randomly between 0 and 2z.

It is very tempting to attribute all of the above obser-
vations to the quantum-mechanical eA'ects of the scalar
potential on the wave function. There are some dif-
ficulties, however, with this interpretation. The electro-
static potential could not extend into the metal for dis-
tances larger than the screening length (l, =2 A), over
which distance it decays exponentially. The phase shift
in the electron wave functions from the electrostatic
Aharonov-Bohm eAect would then be accumulated only
when the electrons move within a screening length of the
edge of the arms of the loop. In order to obtain a simple
estimate of the reduction of V by screening, we make the
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following argument: The fraction of time spent "in con-
tact" with the scalar potential is just the ratio of the un-
screened amount of wire to the total amount of wire.
Based on the assumption that there is no discontinuity in
the dielectric constant at the Sb surface, the effective
voltage across the loop V,tr= (I,/x) (l, /d) V=5 x 10
V, where x is the separation (edge to edge) between the
capacitor and the loop. This brings the measured voltage
scale V2„=2V to within 1 order of magnitude of the ex-
pected 40 pV. We suspect that the dielectric discontinui-
ty at the Sb surface and the high dielectric constant of
the Si substrate will both tend to reduce V,g further.
The electron wave functions penetrate into the Si sub-
strate' on distances of the same order (l~„=I A). If
there is no inversion charge screening the electric field at
the Si surface, then the electrons in the Sb might "con-
tact" the electrostatic potential in the substrate. The
reduction of the applied voltage is also dificult to esti-
mate in this case because the extent of the wave-function
tail into the substrate and the thickness and height of the
Schottky barriers are dificult to calculate. We suspect
that the reduction will again be many orders of magni-
tude. Alternatively, if the capacitor probes leak current
into the loop through the various Schottky barriers and a
surface charge layer, then a potential gradient can exist.
Our measurements suggest that this gradient is much
less than a nanovolt, and therefore, is unimportant here.

The classical electrostatic force on the electron must
also be present. It is, after all, the conduction electrons
which screen the electric fields in the loop. Although the
force on the electrons in the loop is small, it is still large
enough to move many of the electron trajectories. Since,
in the spirit of the theory which discusses the efI'ects of
moving a single impurity, ' it is only necessary to move
few of the classical trajectories a distance of order of the
Fermi wavelength (XF= 10 A) in order to change the
pattern of fluctuations, it is probable that the classical
force is afI'ecting the measurements. It is obvious that
spatially shifting the classical trajectories could give rise
to the results in Fig. 2(c) where the half-width of the
cross-correlation function is interpreted as the amount of
voltage required to move the trajectories a distance XF.
A gradual shift of the classical trajectories might lead to
the results in Fig. 2(b) by gradually scrambling the
speckle pattern. Since the net efIect of scrambling the
paths is random, we expect that the average shift in the
conductance fluctuations (measured globally by a corre-
lation function) will be zero which is consistent with the
inset in Fig. 2(b).

To conclude, we have demonstrated experimentally
that a transverse electric field can be used to tune the
conductance fluctuations in a metal loop. The eAects of
electric field are in all cases similar to that of the per-
pendicular magnetic field, as one expects from the
Aharonov-Bohm mechanism, but because of the disorder

in the device, it is impossible to say whether it is this
mechanism or simply the spatial rearrangement of the
carrier trajectories which causes the observed effects.
There are classical forces on the electrons in the loop,
and these forces must play a role in the voltage depen-
dence.
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