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Cancellation of Dilaton Tadpoles and Two-Loop Finiteness in SO(32) Type-I Superstring Theory
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By use of a superspace generalization of the involution technique (method of images), it is shown that
dilaton tadpole amplitudes for the world sheets with the topologies of disk and projective plane cancel for
the SO(32) type-I superstring. The same method also shows that the amplitudes at the one-loop level,
i.e. , on the torus, cylinder, Mobius strip, and Klein bottle, vanish after summation over spin structures.
The results suggest that the theory is finite up to two loops.

PACS numbers: 11.17.+y, 12.10.6q

One of the important problems in string theories is the
finiteness of the theories. In fact, recent interest in string
theories was largely inspired by the discovery' of the
cancellation of (one-loop) infinities and anomalies in
SO(32) type-I superstring theory. Physically meaning-
ful infinities in string theories can be interpreted as in-
frared singularities, arising when a massless particle (the
dilaton) with the propagator 1/k from the diagram
disappears into the vacuum (k" =0). [There are other
sources of (unphysical) divergences such as those from
tachyons, which we neglect here. ] Thus it is plausible
that the cancellation of physically meaningful infinities
(in open-string amplitudes) at L-loop level is implied by
the cancellation of dilaton tadpoles at I.—1 and fewer
loops provided there are no other sources of dangerous
divergences (and no others are expected).

Recently Douglas and Grinstein have shown that the
dilaton tadpoles cancel in purely bosonic open-string
theories in 26 dimensions for the group SO(2' ) at tree
level. Subsequently Weinberg has explicitly demon-
strated the absence of divergences in the one-loop ampli-
tudes, thus substantiating the above connection. It is ex-
pected that the cancellation of infinities in SO(32) super-
string theory' is also equivalent to that of dilaton tad-
poles. Actually the argument can be used in the other
way to get dilaton tadpoles from the one-loop ampli-
tudes 25

It has been pointed out, however, that infinities at the
one-loop level suff'er from an ambiguity related to regu-
larization and may be made to cancel for the SO(8)
superstring. It is thus interesting to demonstrate explic-
itly that these dilaton amplitudes cancel out in SO(32)
superstring theory and examine what happens in the next
order, since computation of dilaton tadpoles at the one-
loop level is much easier than that of general amplitudes
at the two-loop level. In this note we show that the dila-
ton tadpoles indeed vanish at tree as well as one-loop lev-
els for the SO(32) type-I superstring without ambiguity
after summation over spin structures. This is a strong
suggestion that the theory is free from divergences up to
two loops.

There has been a "non renormalization" theorem

=-,' (a,-X e,X—~ a, ~ —K a,K+F').
It follows that the propagator on the sphere is given
b 9, 10
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I
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There is only one spin structure (boundary condition)
since the sphere has no uncontractible loop. Equation
(3) corresponds to periodic fermion fields on the sphere
realized by fields with Neveu-Schwarz boundary condi-
tions in cylindrical coordinates. '

The path integral for type-I superstring theory con-
tains a sum over all world-sheet topology. "' By use of
the dilaton vertex

xe""Jt d z d 8DV~DV"e'

with

e""=~"" p"p" pP"" p p=1 p'—=P '=o—
,

(4)

which claims that amplitudes with three or fewer exter-
nal states vanish to all orders in superstring perturbation
theory. These arguments, however, assume unbroken
spacetime supersymmetry and mainly focus on closed
superstrings, although it is plausible that they can be ex-
tended to open superstrings. In view of the fact that
open superstring [except SO(32)] theory was found to
suAer from gauge, gravitational, and most probably su-
persyrnmetry anomalies by explicit computation, it is
desirable to check the cancellation directly without as-
suming supersymmetry. My results suggest that the
nonrenormalization theorem is probably valid also in this
theory.

I use superfield ' for the fermionic strings. Thus the
coordinate superfield is defined by

V"(z, 8) =4'"+ 8K"+ W, "+88F" (p =1,..., 10), (I)
where z and 8 are one-dimensional complex (Grass-
mann) numbers. With covariant derivatives
D =t)e+ 88„D=Be+88,—,the Lagrangean is written as

Z=- I d 8DV DV2 J
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it is easy to derive the dilaton tadpole amplitude
II'

A(p) =(2x) "8(p)k 'x.
I VMCG I d .p,. detPi'/2P&/2,

' 1/2 i 5
det'D e""J d zd 8 lim DD'(V"(z, 8)V"(z', 8')), (6)
detV2 Z ~ Z

where the sum over surfaces and integration over
(super-)Teichmiiller parameters are suppressed, V and
D are Laplacian and Dirac operators, respectively, and
P~ is a differential operator that maps vector into second
rank tensor with P ~y2 its supersymmetric analogue.
Equation (6) contains the sum over spin structures (if
any), and is divided by the order d of the diA'eomorphism

group and the volume
I VMCGI of the mapping class

group, with the power of the coupling constant X given
by the Euler number X of the world sheet. Note that
among various possible contractions, only the one in Eq.
(6) remains because of e p =p =0, and (6) is valid to
the order of our interest. Thus our task is reduced to
computing determinants and the propagator (Neumann
function, on appropriate Riemann surfaces.

The lowest surfaces on which the dilaton tadpole in
the type-I superstring theory appears are the disk (Dz)

z k/z, 8 ~ ( —k)' 8/z, (7)

where k =+1 ( —1) corresponds to Dz (RPz). The in-
volution for 8 is fixed by the requirement that (7)
preserve supersymmetry, i.e., Q Q up to an overall
factor. Note the sign ambiguity in (7), corresponding to
the ambiguity in defining the relative sign of k to X. No
physical result will depend on this sign. From (3) one
thus has

!
and projective plane (RPz). The Neumann functions for
these spaces are obtained from those on their "doubles"
(closed oriented surfaces) by symmetrization with re-
spect to the corresponding involutions. ' Our basic idea
is to use a superspace generalization of this technique.
In the present case, the double is a sphere and the
apropriate involutions are

(V"(z, 8) V'(z', 8')) = —(8"'/x) [ln I z —z' —88'I +ln
I

1
—kzz'~ ( —k) ' 88'I (8)

There is no (different) choice of spin structure on Dz and RP2. ' This is to be expected because there is only one spin
structure on their double (sphere). Since the scalar superfield (1) remains same under (7), one gets the condition on A,

and k:

k(k/z) = ~ ( —k) ' 'zk(z), X(k/z) = + z%(z)/( —k) ' '. (9)

This is in accordance with the condition for a fermion to be well defined on Dq and RP2 (i.e. , under the map z k/z);
one can in fact give mode expansions for X and K satisfying (8) and (9) in terms of Neveu-Schwarz mode operators.

The bosonic determinants for D2 and RP2 were evaluated in Ref. 4 and their ratio is given by RPz/D2=2 in our
case. Therefore we only have to compute (the ratio of) the fermionic determinants. Now spinors on a sphere with an-
gular momentum (j,m) are given by'

[(j+m)/2j]'"Y/ i/~, m i/2

[(j—m)/2j] '
Y, —//2 ppg+]/Q

P2=
[(j m + 1 )/(2j+ 2) ] '/'Y,

[(j+m+ 1)/(2j+ 2)] '
Y/+ ~/2 m+ &/q

(10)

Under (7), they transform as (i =1,2)

y;(/r - 8) = ( —1)' +' ' y;(8), y;( + 8) = ( —1)/+'/'+'y;(8).

As a consequence, we can expand spinors as

J
y= J2g g (c~~ y~+c/~ yz),

J 171 J

where c/~'~=0 for even (or odd) j—m+i for D2, and c/~'~=0 for even (or odd) j—
2 +i for RP2 (i =1,2). These

coefficients are determined from the requirement that the scalars pter take the same value at the involution points. For
both D2 and RP2, there is always one spinor (but not both y~, yz) for each (j,m). Since the eigenvalues of D depend
only on j and det(P~/zP~/2) is essentially the same as det'D, " this implies that fermionic determinants are equal for D2
and RP2.

Substituting these results into (6), one finds

AD(p) =(2~) "S(p)k 'x-' d'z x '
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which is similar to the bosonic case. Note that the sign ambiguity disappears here. It is now necessary to factor out
the volume of mapping class from the integral and evaluate the ratio of the integral and

~ VMCG ~
d. Proceeding as in

Ref. 4, one finally finds

2 'for D2,
AD(p) =(2tr) ' 6(p)). ')c'x ' (i 2)

Since the amplitude on Dz gets a group factor N for SO(N), this implies that the total amplitude vanishes for SO(2 ),
as expected. '

I now wish to extend the analysis to one-loop level. At this level, there are four surfaces: torus (Tz), cylinder (C2),
Mobius strip (M2), and Klein bottle (Kz). The latter three may be constructed from their double T2 by imposition of
suitable symmetries under involution. ' The argument is thus a generalization of the proof of vanishing tadpoles on T2
for closed superstring, ' combined with these involutions. So it is instructive to review this case' first.

A torus can be represented as the complex plane with periodicity z =z+1 =z+ T: where r is a complex number
called Teichmiiller parameter. There are four possible spin structures with the boundary conditions

gp( + + ) ( 1 ) n(1 —a)+m(1 —t))gp( )

with (t, p=0, 1, and similarly for k" with independent set (a', p'). It is known that the amplitude in the sector (1,1)
vanishes because of fermion zero modes, ' ' and we can neglect this case. The fermionic determinant in the ((t, )8) sec-
tor is given by

(detP)tt2P)t2) ' (det'D) =q(,t)) [0[t)](0)/(0'[)'] (0) ) ' (i4)

where 0[t)](z) is the Jacobi 0 function with the characteristic (ap), 0 is the derivative of 0 with respect to z, and )1(,t))
is a phase. The modular invariance of the theory tells us that

n(.p) =( —i )"'.
up to an overall phase. Now the Neumann function for T2 is

I 0[) ](z z ) 2[Im(z —z')] 00' 0[t)](z z') 0'[(](O)
(V"V')T —6"' —ln +

0'[,'] (o) Imi 0['l(z —z') 0[(](O)

(is)

g g' 0[t) '] (z —z ') g'[,'] (o)
0[,'1 (z —.-') 0[;,'] (o)

(16)

(v~v ),
=(v~v ),

, , +(v v')T i,=„, (18)

and the fermionic determinant is obtained from (14) by

The fermionic propagator is determined by the require-
ment that it be meromorphic with a pole at z=z' with
residue I/)r and satisfy suitable boundary conditions.
Substituting (14)-(16) into (6), one finds that only the
bosonic (first two) terms in (16) contribute to (6). Thus
the spin-structure dependence of (6) is solely given by
(14), and hence (6) vanishes after summation over spin
structures because of the identity

g( —I)'+~0[ ](o)'=o
a, P

The arguments for other amplitudes are basically the
same combined with the supersymmetric involutions ap-
plied to T2. In the bosonic case, the Neumann function
for Cq can be obtained by the involution z —z from
T2 with the Teichmiiller parameter r =it (pure imagi-
nary). ' In our case we should add the involution
0 ~ I, O. Thus

our putting T;=it. ' One again finds that only bosonic
terms contribute to (6) and immediately gets the vanish-
ing result for dilaton tadpole on C2 after summation over
spin structures. Note, however, that in this case it is not
the modular invariance but another argument involving
proper spin and statistics that determines the phase (1S),
which corresponds to Gliozzi-Scherk-Olive projection. '

It would be now fairly clear that the same argument
applies to other cases M2 and E2 once suitable involu-
tions are given. So I only give their involutions and r:
for M2,

z = —,
' (1+it ) (no involution necessary);

for E2,

r =it, z —z+ z (1+it), 0 +'ig

In this way one finds that these amplitudes separately
vanish after summation over spin structures. Since this
summation has the eff'ect of projecting to supersym-
metric states, ' these results are consequences of unbro-
ken supersymmetry.
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The above results are in accordance with the fact that
the dilaton vertex at zero momentum is just the string
action and so the dilaton tadpole is obtained by dif-
ferentiation, with respect to the string tension, of the
partition function, which vanishes at one loop' after the
spin structure is summed. [In this connection, it is a lit-

tle puzzling that the dilaton amplitude vanishes but the
vacuum energy seems to be nonzero for the SO(8192)
bosonic string. ]

Thus supersymmetry is clearly very important in the
cancellation at one-loop level, but it appears that SO(32)
is necessary only in the lowest order. Of course, super-
symmetry is anomalous' except for SO(32) and obvious-

ly there is a deep connection between supersymmetry,
finiteness, and SO(32) symmetry. I hope that my results
shed some light on this problem. Especially I wish to
emphasize that my computation does not have an ambi-

guity in regularization and clearly indicates that
infinities will cancel for SO(32). It would be interesting
to see how much these discussions can be carried over to
higher loops. Finally, I remark that the method in this

paper can also be applied to heterotic strings.
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