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Zener Transitions and Energy Dissipation in Small Driven Systems
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We consider the dynamics of an electron in a finite one-dimensional system, subject to a uniform elec-
tric field (or an electron in a ring, subject to an emf induced by a time-dependent magnetic flux), In the
presence of elastic scattering due to localized potentials the driving source does not supply energy to the
system in the steady state. The dissipation in the presence of inelastic scattering is evaluated. The
Ohmic resistance of the system depends crucially on the inelastic rate even in the weak-localization limit.
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Basic concepts in transport theory have to be revisited
when submicron systems are considered. One must ask
how dissipation and irreversibility arise in mesoscopic
systems. Here we shall consider a simple model of an
electron in a one-dimensional (1D) metallic loop '
driven by a magnetic flux tt confined within the loop,
which varies linearly in time. We address the ques-
tion (which has been the subject of some recent contro-
versy) whether the mere fact that the system is biased by
an external source is sufficient to pump in (and eventual-
ly to dissipate) energy, even when the electron experi-
ence only elastic scattering. Our treatment avoids some
of the assumptions made earlier, and accounts for in-
terference eAects, essential for a correct description of
the time evolution of the system. We show that in the
absence of inelastic scattering, the system eventually
reaches a state where no additional energy can be
pumped into it, regardless of the strength of the bias. In-
elastic events are essential to bring about finite resis-
tance, R. The value of R is strongly aftected by the in-
elastic rate even when we consider a good conductor
(i.e. , when we consider the weak-localization regime).
Our picture diff'ers from the Landauer picture of quan-
tum resistance, according to which the value of the resis-
tance (for a fixed inelastic-scattering length) is con-
trolled by the elastic scattering.

Buttiker, Imry, and Landauer ' showed that, when
Zener transitions are neglected, no dissipation arises
when the flux in the ring varies with time. It was shown
later that thermal transitions may lead to dissipation,
and, alternatively, that Zener tunneling combined with
inelastic eflects' may be a possible mechanism (most
importantly at low temperatures) for energy dissipation.
In the absence of a coupling to a heat reservoir, Lan-
dauer'' has demonstrated that Zener transitions can be
undone by reversal of the external driving field. Conse-
quently, the work done on the system by the driving
source can be retrieved and no energy is being dissipated.
Most recently Lenstra and van Haeringen have argued
that in the presence of a constant electromotive force
around the ring, Zener transitions may lead to a nonvan-
ishing dc current. This immediately implies that even in
the absence of inelastic scattering (some elastic scatter-

ing is needed, though), energy is dissipated. Our results,
summarized above, suggest quite a diA'erent picture.

Our description applies to a wide range of random po-
tentials. An example is the Hamiltonian
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which describes an electron in a ring. Here (t)o is the
quantum fluxoid and J is the coordinate along the ring.
The electromotive force is FL = —6p/t)r, where L is the
circumference of the ring, F the electric field, and z the
time. The courier coefficients of the potential are in-

dependent random variables of mean zero with V
= Vk*, k =2trn/L, where n is integer; this corresponds to
a set of local potentials at random positions. In the case
of an electron in one dimension driven by an electric
field, the term ttt/ttto is replaced by i=eFLr/2trh. One
can now solve for the adiabatic single-electron levels,
treating r as a parameter (Fig. 1). These levels are
periodic in r with a period 1. The narrow gaps E„(e.g. ,

the energy difference between points c and d in Fig. I )
are randomly distributed as a function of the band index
n, and for n = nF (nt; being the index of the Fermi level

eF) the average value of Es does not depend sensitively
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FIG. 1. The (E, r) phase space for a one-dimensional sys-
tem: energy bands vs normalized time.
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on n. The levels may be doubly occupied because of spin
degeneracy. Zener transitions among the levels will take
place because of the explicit dependence of "iV on time.
If E~ is su%ciently small, one may consider Zener transi-
tions only between adjacent levels. These transitions will

take place mainly in the neighborhood of the narrow
gaps-

For a weak elastic scattering, when

E 2
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(2/rh e/ML)Fnq

one can use the sudden approximation to evaluate the
complex reflection and transmission amplitudes, describ-
ing the Zener transitions. The transition amplitude from
a to b', B(a,b') (Fig. 1), is denoted by t(n, n+1). Simi-
larly, B(b,a') —= t'(n, n+1); B(a,a') =r(n, n—+1); B(b,
b') =r'(n, n+1). We found' r(n, n+1) =ix„„+~,
where the indices of x refer to the energy gap between
the bands n and n+1. The corresponding transmission
amplitudes, given by t =t '=(I —

! r ! ) '/, are real.
These amplitudes satisfy time-reversal and unitarity re-

quirements, ' and are invariant under m m + 1. Simi-
lar expressions are obtained for integer values of ~.

The current in the system is given by

(I(t)) =6(E(t))/6r,

where angular brackets denote a quantum-mechanical
expectation value. If an electron follows adiabatically
one particular energy band, its contribution to the dc
current (the average slope of the band) is zero. In the
following we shall consider the evolution of the system in
the (E, r) phase space. We shall see that the occupation
of the energy bands reaches a saturation ("localization
in the energy direction"), which means that in the steady
state (E(t)) =const. From Eq. (1) it then follows that
(I(t)) =0. Therefore, for large values of r the average
work done on the system is zero; this corresponds to a
dissipationless situation.

We shall now relate the probability amplitudes at time
r+ —,

' (at points a', b' for instance) to the amplitudes at
a time i —

4 . When the slope of the band at a point is

positive, the corresponding amplitude is denoted by At.
Conversely, we use the notation 4 ~. We then have

A t (r+ —,', n ) =tA1(r ——,', n —1)exp[ —i (E„+E„~) (tt/eFL )]+r'A
1 (r —4,n)exp[ —iE„(2tr/eFL)],

A
1 ( r + 4, n ) = tA 1 ( r —4, n + 1 )exp [ —i (E„+E„+~ ) ( tr/eFL ) ] + rA

1 ( r —4, n )exp [ —i E„(2tr/eFL) ]. (2)

We have included here phase factors —6 ' JE dt as-
sociated with the time evolution of the wave function.
Here E„is the average adiabatic energy of the nth band.
We now take the Fourier transform of Eqs. (2) with
respect to Z. We note that, since the coefticients l, r, r'
and the phase factors are z independent in our discrete
time, there is no coupling between diff'erent co com-
ponents. After some algebra, ' we can relate the ampli-
tudes at the (n+1)th level to those at the nth level by
the following transfer matrix:

A 1 (n+ 1, co) I/0„(p„/0„)* A1(n, to)

A
1 (n + 1,co) p„/0„]/0„* A

~ (n, o)c (3)

where

0„(co) = t (n, n + 1 )exp [+i (E„+1 +E„)(tr/eFL ) +i co],

and

p„(cu)= —r(n, n+1)exp[+iE„+~(2tt/eFL)+iso]

The above transfer matrix obeys unitarity and time-
reversal symmetries. O„and p„are random because of
the randomness of the corresponding r's and t's, and also
because of the pseudorandomization that arises from the
phase factors. ' Thus, the problem has been mapped
onto that of electron localization in one dimension, '

with 0 and p being the effective transmission and
reflection amplitudes. The localization length is given by

(= [In ( I /0) ] ' = [ln (1/t ) ]

and is independent of co. Thus, g is also the one
dimensional localization length in the energy direc-
tion. ' ' Substituting our expression for r, we obtain
(for ! r! « I) (=2/x, where g is the number of levels
over which the localized wave function is extended. The
evolution in time of an initially narrow wave packet (in
the action space) is ballistic until a width —g is reached.
The time required for this process is r~=(6z)g, where
Br is the time associated with a single oscillation in the
(E, r) space. For (= 100, FL = 10 7 V, we obtain
v~=10 s. ' These numbers will change drastically
when a multichannel ring is considered, ' because g is

dramatically increased; the analysis presented below of
dissipation in such systems for i;„&i~ remains valid.

Dissipation occurs in the presence of inelastic events.
At times smaller than r;„(the time scale over which the
electron loses coherence because of inelastic events) the
electron wave packet is coherent. For times r such that
T.;„&~, ~&, it propagates diff'usively in the energy direc-
tion (on length scales shorter than g). Any gain in ener-

gy due to this diA'usion will eventually be dissipated by,
for example, the emission of phonons (followed by the
"collapse" of the wave packet). The energy loss of a sin-
gle electron is

gE(r /Pr) I/2 (2/r2h 2n /~L 2)(r /gr) 1/2

(where AE is the typical energy spacing near eF). The
number of levels around EF (and therefore the number
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of electrons) involved in the collapse is = r;„/Br T. hus,
the total energy dissipated at time r;„is

hE (r;„/6r) = (e F n t /2 M) r;„
The dissipation increases with i,„sincefor z;„(~~ more
electrons can be excited to higher energy bands as r;„is
increased. The resistance R of the system can be defined
as the ratio between (FL ) and the dissipated power.
We find

R = 2ML /e nFr;„

For r;„&r~ (cf. Thouless' ),

R=(MF L /n lrt nq' )r

Note that we have not made any strong assumptions con-
cerning the rate of elastic scattering.

To test the localization in the phase space numerically,
we have considered a uniform interband spacing, with no
randomness in either t or r. In Fig. 1 there are
several paths that contribute to B(q,p). The path
B~ =B(qu ~u2p) involves a factor tr; the path B2
=B(quit zp) involves a factor rr', etc. We also have ad-

lO

ditional phase factors [cf. Eq. (2)]: B~ contains an extra
factor of e" compared with B2. The phase a depends
on the energy and the time scale. Figure 2 shows

~
B(i,f) ~—:

~ B(j,l)
~

as a function of l. More cases have
been studied by us, and we have concluded that for
a/2n & 1 and irrational the system is indeed pseudoran-
dornized. Thus, g is given by Eq. (4), and is not sensitive
to the value of a (provided pseudorandomization is

satisfied).
We have also considered the case in which the phase

accumulated between consecutive transmission or re-
flection events may be neglected (a=0, 2rr, . . . ). This
may correspond either to an unphysical situation in

which very few energy bands near ep contribute, or to
special resonant transmission conditions (cf. Fig. 2). De-
tails of the analysis of this case will be given elsewhere.

In conclusion, we have shown that in the presence of
elastic scattering the wave function of the driven ring is

localized in the energy-band picture. We have discussed
the transient leading to the localized situation and
demonstrated how the collapse of the wave function due
to phase-smearing events leads to energy dissipation.

We have benefited from discussions with E. Ben-
Jacob, M. Buttiker, S. Fishman, Y. Imry, R. Landauer,
and P. A. Lee. We thank R. Landauer for sending us his

recent reprint prior to publication. This work was sup-
ported in part by the National Science Foundation under
Grant No. DMR83-19301.
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FIG. 2.
~
B(j,l)

~

vs l. The resulting amplitude is the sum

over all contributing paths. Here a =s. Curve a, j=3,
r =0.32i; curve b, j=7, r =0.44i; curve c, j =3, r =0.44i.
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