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Information Dimension in Random-Walk Processes
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Energy transport in disordered media is studied by use of random walks, through a new entropylike
function I/v which results in an information dimension Dq of a random-walk process. DI is calculated
and compared to the fractal dimension for two-dimensional square lattices. It is found that a fractal lat-
tice has a much broader (by a factor of 5) site-visitation distribution than a perfect lattice. The above

parameters contain more information than the usual random-walk parameters, and provide a new pic-
ture and characteristic quantities where random walks are used to simulate transport properties.

PACS numbers: 72.90.+y, 02.50.+s, 05.40.+j

In recent years a large interest has been developed in

the properties of disordered lattices, mainly because they
provide the most plausible model for amorphous and
technologically oriented materials. ' A random two-
component binary lattice to a good approximation
possesses this property because of the inherent random-
ness introduced in its preparation. Moreover, such lat-
tices have been shown to have a structure that is de-
scribed by a critical fractal exponent, while a dynamic
efrect on such structures, such as a random-walk process
by a particle, is described by the spectral dimension (ex-
ponent), with considerable effort being devoted (and
justifiably so) to their exact numerical values.

The fractal dimension of a percolation cluster is found
by the consideration of several sections of the lattice with
a diA'erent linear size k each time, and then by the calcu-
lation of the number of sites M that belong to this cluster
in each section. ' The fractal (Hausdorff) dimension is
defined as

visited in this walk. The range of k will be 1 ~ k ~ S~,
so that all visited sites are accounted for. Also gkik
=N. Then the probability Pk of visiting the kth site is

Pk =ik/N Then, .

Dr =I'/InN, (3)

where

SN

Iiv = —g Pk inPi, .

k=1
(4)

DI is called the information dimension. Its definition is
based on the new function I~ which, because of the form
PlnP, bears out an entropylike character. I& is a mea-
sure of the relative probability that each site is accessed
at some time in the walk. More generally, the informa-
tion dimension is a property of any random variable with
a probability measure implied in it. If all sites have ex-
actly the same probability of visitation then Pk = I/S~
and

Df = ln [M (X ) ]/In (X ). SN

Iran
= —g (I/S~)ln(I/Siv) =InSiv, (s)

For a particle performing a random walk of N steps on
a percolation cluster, the spectral (fracton) dimension D,
is defined as

D, =21n (S~ )/InN, (2)

where S~ is the number of distinct sites visited at least
once in the walk. The quantity S~ gives an overall mea-
sure of the spread or the range of the particle motion.
Thus, it has been used in the past to simulate exciton
transfer in guest-host and guest-trap systems, in the
chlorophyll action in photosynthetic units of plants, in
chemical reactions, and other solid-state applications. '

I n all these cases the parameter of interest was the
overall range of the random walk, since this range is
directly related to a trapping probability, a cross-section
probability for reaction, etc. , while it makes no diA™erence
how many times a particle has visited the same site. To
collect this new information one introduces the quantity
ik, which is the number of times that site k has been

k=l

and therefore Eq. (4) is reduced to Eq. (2), i.e. , DI =D,
Also in the trivial case of Pk =0 the product Pk lnPk is
taken to be 0. It is expected that J~ will show charac-
teristic scaling for these processes.

The functions and distributions are calculated by mon-
itoring random-walk simulations as a function of time.
Lattices are generated in two-dimensional square topolo-
gy, first perfect and then random according to a given
occupational probability p, where p ranges from p,~ p ~ 1.00, p, being the critical percolation threshold.
For the square lattice, I use p, =0.593 (site percolation
problem), I isolate the largest cluster using a cluster
multiple labeling technique (CMLT), and all subse-
quent work is performed on this cluster. I monitor
several random-walk properties, such as S~, the number
of distinct sites visited at least once, and R~, the mean-
square displacement, which are found to be in very good
agreement with past studies. I also monitor here ik,
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5~ =a ~N/1n(a2N) + a3. (8)

From this equation the perfect lattice dimension
D =0.89, for the range of % studied here. For the frac-
tal lattice (at p=p, )" for d=2 the spectral dimension

and w, , i.e. , on W;. Because of the shape of the Wdistri-
bution, only sites with relatively few visits (small i) con-
tribute appreciably to Z and, therefore to I~. From the
maxima in Figs. 1 and 2, we see that this happens at
about i = 5 (perfect lattice) and at about i = 30 (fractal
lattice), i.e., there is a difference by a factor of 6 between
the two cases.

In Fig. 3 we have an information plot of I/v as a func-
tion of time for the perfect lattice and at p =p, . The
least-squares values of the slopes of the straight lines
give DI =0.89 ~ 0.02 (perfect lattice) and DI =0.62
~0.02 (fractal lattice). We see that in the latter case
the blind- and myopic-ant models give identical slopes,
leading to the same dimension. This agreement is in ac-
cord with previous studies, where these two models re-
sult in the same exponent, as a result of the fact that the
exponent is derived from ratios of the S~ quantities (or
slope of the 5~ plot), and not from the S~ absolute
values, which are certainly diferent in the two models. I
now compare these with values derived with diAerent
methods. For a perfect lattice as a result of the logarith-
mic and the other correction terms,

D, =1.30, but D, =
3 for d~ 3. The random-walk ex-

ponents are D, /2 [Eq. (2)], i.e. , 0.65 (d=2) and

(d ~ 3). We thus see that for the perfect lattice the two
methods coincide, while for the fractal lattice the infor-
mation dimension DI is somewhat lower than the spec-
tral dimension D, . Intuitively, there is no reason for
these sets of exponents to coincide to the same value, but
it is certainly a striking feature that this happens in the
case of a perfect lattice while a small deviation is ob-
served in the fractal lattice.

A similar type of approach with an entropylike func-
tion was recently introduced" in related work for growth
models, diffusion-limited-aggregation and Eden models.
The exponents resulting from the entropy function of the
generated clusters were also found to be lower than the
usual fractal exponents, but no random walks were re-
ported in these structures.

Summarizing, this work has shown that the informa-
tion dimension Di, through the function I~, presents an
alternate approach to the well-known sets of fractal ex-
ponents [Eqs. (1) and (2)] in studies of random walks
and their applications. It is a function that is used in

dynamical systems in many areas of physics. ' In addi-
tion to S~, which was first derived through D„we re-
cover now the ~; and W, functions, and thus quantita-
tively explain the decrease of S~ as one goes from the
perfect to the fractal lattice. DI scales surprisingly well
for all lattices (Fig. 3), thus resulting in exponent values
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FIG. 3. I/v as a function of time (logarithmic form) for the same data as in the previous figures. The lines are the best fit from a
linear least-squares method. Here curve a is for the p=1.oo lattice, curve b is for the p=p, lattice, myopic-ant model, and curve c
is for the p =p, lattice, blind-ant model.
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comparable to the fractal exponents. Also, the exponen-
tial function w; (Figs. 1 and 2) is found to obey scaling
laws, both in the perfect and in the fractal lattice cases.
The analytical behavior of the w; function and the prob-
lem of multiple visits in all dimensionalities is an extend-
ed but old' problem. It is more tractable in the case of
perfect lattices, but just as interesting in the case of
disordered lattices at the critical point, as well as in the
crossover (fractal-to-classical) region. It is far from be-
ing solved in all contexts discussed here. Work is

currently in progress along these lines, and the results
will be published elsewhere.
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