
VOLUME 59, NUMBER 15 PHYSICAL REVIEW LETTERS 12 OCrOBER 1987

Nature of Exotic Negative Carriers in Superfluid He
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The mysterious "fast" and "exotic" negative carriers in liquid He are interpreted as multielectron
bubbles. The fast carrier is shown, by a detailed calculation of mobility, to be a two-electron bubble
with a radius of approximately 30 A. A crucial role is played by the unusual kinematics of rotons, which
have not previously been adequately treated. The other exotic carriers are multielectron bubbles with
higher charges.

PACS numbers: 67.40.Yv

The "normal" negative carrier in liquid helium is well
established as a single electron in a bubble state, with the
electron wave function concentrated in a spherical re-
gion, about 16 A in radius, essentially free of He atoms. '

Another ("fast") negative carrier, first reported in
1969, was confirmed and studied in 1971 ' in experi-
ments which reported the existence of still other ("exot-
ic") negatively charged entities. These observations have
more recently been confirmed, but the nature of the ob-
jects has remained obscure. References 3 and 4 discuss,
and find reasons to exclude, various possible models.

One obvious possibility is that these are many-electron
bubbles. The two-electron bubble is energetically unsta-
ble against decay into two one-electron bubbles, as is dis-
cussed below. In addition, if the cross section for roton
scattering were to scale with the square of the radius, the
mobility of the two-electron bubble (calculated radius R
approximately 30 A) would be less than that of the nor-
mal carrier. However, the fast carrier has a mobility ap-

proximately 6 times larger than the normal one. We
suggest, nonetheless, that the fast carrier is a two-elec-
tron bubble, which is stable against small deformations,
and that the exotic carriers with intermediate mobilities
are many-electron bubbles with higher charges. We find
that this interpretation gives an accurate account of the
observed mobilities, provided that proper at ten tion is
paid to the unusual kinematics of rotons.

This work is concerned with carrier mobilities in the
temperature range near 1 K, where the elementary exci-
tations primarily responsible for the frictional drag come
from the roton region of the elementary excitation spec-
trum. At these temperatures, furthermore, the roton
mean free path is large compared with the dimensions of
the carriers considered. The known carriers also have
large effective masses. Under these conditions the mobil-
ities can be calculated with the theory of Baym, Barrera,
and Pethick. Since the carriers may possess Z elec-
trons, we evaluate the mobility p and the friction co-
efficient y=F/v from the expression

y=Ze/p = —(6tr'l't ') '„p'[cin(p)/ciel
~
de/dp

~
crm(p)dp,

where the momentum-transfer cross section cr (p) can
be evaluated with use of

(p) =J"p '[p (p —p') ] (d /d n )d n. (2)

In this expression, p and p' are initial and final roton mo-
menta, and n(p) is the occupation of state p by a roton

n(p) Iexp[e(p)/r —1]j '=-exp[ —e(p)/r].

The roton energy e(p) is customarily written in the form

e(p) =(p —pp) /2pp+6, r=kaT«6=8. 68 K, (3)

The quantity p [p (p —p')] reduces to 1 —cosO, and
is between 0 and 2, for the usual elastic scattering, where

p p.
Rotons, however, have two ("conjugate") values of p,

! here called p and p, for a given energy. If we use the
dispersion law given above, then p =2po —p. We will

usually prefer the rationalized expression

e(p) = [(p' —pp2) '/(8pp'pp)]+a,

which differs fractionaily from (3) by (p —pp)/pp,
small quantity in the temperature range of concern.
With the rationalized expression (4), conjugate roton
momenta are related by p =2po —p . Figure 1 shows
the situation for elastic reflection of rotons from a plane
surface. Rotons with p )po are denominated "ordi-
nary" or "0," and those with p (po "extraordinary" or
"E." The group velocity, v =V~e is parallel to p for ordi-
nary rotons, but antiparallel for extraordinary. A pro-
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FIG. 1. Roton reflection from a plane surface. The concen-
tric circles represent the two sheets (radii p and p) of a surface
of constant energy in momentum space. In the space diagram,
the roton is incident from below and reflected downward, with
initial and final velocities shown. The four drawings illustrate
normal (N) and anomalous (A) reflection of ordinary (0) and
extraordinary (E) rotons.
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[[(—h 'V' —po2) '/(8po2pp)]+ a] + = e+. (5)

In one dimension, this has four solutions, exp(~ipz/6)
and exp(~ipz/h) for a given energy. A region in which
the roton cannot propagate is represented by our letting

Examination of this limiting process shows that
%' and its first normal derivative must vanish at a hard

cess is "normal" (N) if p'=p, and "anomalous" (A) if
p'=p&p. For these elastic processes t. =e' and pII =pII.
The factor p [p (p —p')], unlike (I —cosO ), can be
less than zero, and is so for anomalous scattering of ex-
traordinary rotons (EA scattering).

A given incident roton can, in general, undergo the
two types of process (OA reflection is only allowed over
a range of angles of incidence). The branching ratios
(flux fractions), I N and I A, are the probabilities of the
two processes. In a slowly varying force field, that is,
in the classical limit, only one process will occur. A
quantum-mechanical argument determines the branch-
ing ratios: The function e(p) is considered a Hamiltoni-
an, with the substitution p (h/i)V for the passage to
quantum mechanics. At this stage the preferred form of
e(p) is Eq. (4), which produces a fourth-order equation

FIG. 2. (a) Roton momentum-transfer cross section as a
function of wave number. (b) Averaged roton momentum-
transfer cross section plotted against temperature.

wall, and yields a solution

IPZ+ =exp +a~exp
6

+ czA exp6 6

whence

FN =
I

~N I

'= [(p, p, )/(p, +p, )]', —

FA =(p, /p, ) I « I
'=4pP, /(p. +p, )'. (7)

We next consider the scattering from a hard sphere.
We treat the problem classically, since kR =60, express-
ing all quantities in terms of the impact parameter b,
and integrating from 0 to R. The branching ratio I N

vanishes at the roton minimum, and the factor [p (p—p')] changes sign there for E rotons, so that the
momentum-transfer cross section' has the unusual ap-
pearance'' shown in Fig. 2(a). It can be expressed in
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closed form as

(o /7rR )o= —,
'

(2p —4p —I) —
—,
'

p(p +1)+4(p'+p+1)/[3(p+1)]+ —,
' (p' —I)'ln[(p+ I)/(p —I)]

for p&po, and

(cr„,/nR )E= —
1

—
z p(p —1)+ —,

' p+4/[3(p+1)]+ —,
' (p- —I) ln[(p+1)/(p —1)]

for p (po. In these expressions p denotes p/p. Inserting these cross sections in (1), we perform the integral over the ro-
ton thermal distribution numerically, writing

( ) = q -'„I „, p( —g'/q)
~ g( dg, (8)

with g=(p —po)/po and rf=(2pqkaT/po), ko =pc/h =1.92 A ', and @~=0.16MH, . Figure 2(b) shows a plot of this
effective cross section as a function of temperature. There is considerable cancellation between ordinary and extraordi-
nary rotons, leading to a cross section small compared with geometrical and slowly increasing with temperature. The
line shown is (cr ) =0.051 T rrR . The friction coefficient or mobility can then be calculated from

)'=Ze/p = ttkii/3~ exp( —6/r)(cr ) = Ako/3z exp( —6/r)0. 051To6 rrR ~. (9)

We now require predictions for R from the bubble mod-
el ~

The one-electron bubble has been well studied both
theoretically and experimentally. The electron wave
function is confined to a spherical cavity whose equilibri-
um radius at T=0 (Ro' =16 4) is determined by the
minimization of the sum of electron energy and surface
energy. The total energy is approximately 0.19 eV.

The two-electron system has been analyzed theoreti-
cally by Dexter and Fowler. ' Its equilibrium radius is

again determined by the minimization of the sum of
electron and surface energy, but the problem is sig-
nificantly complicated by Coulomb repulsion. A varia-
tional calculation leads to a reasonably reliable estimate
of the energy, which is found to be 0.84 eV, considerably
higher than that of two one-electron bubbles. Thus the
two-electron bubble is not absolutely stable against de-
cay into two one-electron bubbles, but it may well be
stable against small deformations. The energy is mini-
mized for Ro '1 =60ao = 32 A; the same calculation
somewhat overestimates Ro", obtaining a value of 17.5

Bubbles in equilibrium under surface and Coulomb
energies alone are marginally stable. ' ' Electron kinet-
ic energy is small but not negligible for few-electron bub-
bles, and should have a stabilizing inhuence. We will as-
sume them to be sufficiently stable, and calculate mobili-
ties using the theory of the previous section.

Figure 3 shows experimental mobilities from Fig. 17
of Ref. 4 for the fast carrier. The line through the points
is from Eq. (9) with R /Z =435 A, i.e. , a two-electron
bubble with R =29.5 A. . The mobility calculated with
the theoretical value, Rot ' =32 A is also shown. This
agreement is remarkable, considering that no adjustable
parameters have been used. The temperature depen-
dence of (cr ) leads to an effective activation energy near
T=1 K of

—d(lnp)/d(1/T) =8.68 K+0.69(1 K) =9.4 K,

giving very good agreement with the observed slope.

We can estimate mobilities of carriers with higher
charge. According to (9), p~Z/R . We can crudely es-
timate the variation of radius R with charge Z for
many-electron bubbles by including only Coulomb and
surface energy, ignoring kinetic energy (and shell struc-
ture), and variation in charge distribution with Z. Such
a gross approximation predicts R ~ [Z (Z —

1 ) ] ' or
p ~Z/[Z(Z —1)] . The first three exotic carriers have
mobilities lower than the fast carrier by factors of ap-
proximately 0.67, 0.62, and 0.59, respectively. Our
crude approximation predicts mobilities for Z =3, 4, and
5 relative to Z =2 of 0.72, 0.61, and 0.54; we regard the
agreement as very satisfactory, considering that Z=3
represents opening of the first p orbital and that Z =5 is
a half-filled p shell, which is presumably spherical again.

50-
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FIG. 3. Mobility vs temperature. The data points are for
the "fast" carrier from Ref. 4. The upper line is calculated
from Eq. (9) with R =29.5 A; the lower line is similarly calcu-
lated with the theoretical value Ro ' =32 A.
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The present theory does not give a good account of the
mobilities of the well-known "normal" negative and posi-
tive carriers. This model predicts an eff'ective cross sec-
tion approximately one-twentieth geometrical. The posi-
tive carrier, however, has a radius about 6 A, and a roton
cross section approximately twice geometrical. The nor-
mal negative (one-electron bubble) has a radius of ap-
proximately 16 A, and a cross section approximately
one-half geometrical. The source of the discrepancy may
be the relatively small size of these objects. On the one
hand, semiclassical theory is less valid; on the other, the
liquid helium outside these objects is significantly per-
turbed in the strong electric field surrounding each.
Much of the scattering may not occur at the "hard-
sphere" radius, but in the surrounding force field. If the
main effect is the decrease in 6, associated with the high
pressure near the carrier, there will be no anomalous
scattering in the classical approximation. This will tend
to increase the cross section.

The model provides no natural explanation for one of
the most striking properties of the fast carrier, namely
the fact that it appears to reach the Landau critical ve-

locity (60 m/sec) without creating vortex rings. None-
theless, the evidence presented here seems convincing.
The multielectron bubbles are expected to be rather
"soft" against quadrupole distortions. They may thus
have much lower d-wave resonant frequencies, and much
stronger phonon scattering than the one-electron coun-
terpart. The conditions under which these novel nega-
tive carriers are produced apparently involve charging
of the free surface. Thus, they resemble those under
which the giant negative bubbles ' occur.

Finally, it would be interesting to study experimentally
the various reflections illustrated in Fig. 1. When elastic
reflection occurs at a crystalline surface, pii can change
by a reciprocal-lattice vector. Rotons might be a useful
surface probe.
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