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Interface Roughening in Two-Dimensional Quasicrystals

Christopher L. Henley
"'

Department of Physics, Cornell Unit ersity, Ithaca, New York l4853

and

Reinhard Lipowsky
lnstitur fur Festkorperforschung, Kernforschungsanlage, D 5l70 J-u lic'hW, est Germany

(Received 27 April 1987)

The equilibrium fluctuations of interfaces in two-dimensional quasiperiodic lattices, such as Penrose
tilings, are considered. By a transfer-matrix formulation, this problem is mapped to the one-dimensional
Schrodinger equation with a quasiperiodic potential; from the scaling properties of the eigenstates near
the band edge, one can extract the exponent g characterizing the interface roughness. For a cosine po-
tential, we find a true roughening transition in d=2 dimensions. For a Fibonacci tiling, which approxi-
mates the Penrose tiling, we find that j is nonuniversal, j& —,', and s 0 continuously as T 0.

PACS numbers: 68.35.BS, 61.50.Jr, 64.60.Cn, 71.55.Jv

This Letter explores the thermal roughening of quasi-
crystal interfaces and surfaces. This is motivated by ob-
servations of dodecahedral grains of icosahedral Al-Mn,
Al-Mn-Si, and U-Pd-Si alloys, ' and smooth-faceted
triacontahedral "crystals" of the equilibrium icosahedral
phase of Al-Cu-Li. We will consider ideal quasicrys-
tals: Like ideal crystals, they contain high-density
planes of infinite extent —i.e. , they possess translational
long-range order —but these planes are arranged quasi-
periodically rather than periodically.

In simple lattice-gas models defined on Penrose til-
ings, it is easy to verify that (as with crystals) there are
well-defined facets at temperature T =0. The aim of
this paper is to investigate the eAects of T & 0 on an in-
terface in thermal equilibrium, for the case d =2.
Surprisingly, we find that an interface in a quasiperiodic
lattice is less rough than in the periodic case. In contrast
to the periodic case, it may even exhibit a roughening
transition at a finite roughening temperature T~ & 0.

In the first part of this paper, we will consider a solid-
on-solid (SOS) model on a rectangular lattice, where the
interaction strength is modulated quasiperiodically in the
direction normal to the interface. For one case, where
the modulation is described by a one-dimensional Fi-
bonacci tiling, the interface is rough at any nonzero tem-
perature, but the roughness exponent j is smaller than in

a un iform system and goes continuously to zero as
T- 0; for a second case, where the modulation is de-
scribed by an analytic function, there is a genuine
roughening transition (TR )0). In the second part of
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the paper, we consider a model defined on a Penrose til-
ing, which has quasiperiodic modulations in five direc-
tions, and show how this problem can be mapped (ap-
proximately) to one of the class solved itI the first part.

We will take fixed quasiperiodic lattices, and consider
simple lattice-gas models which are equivalent to purely
ferromagnetic Ising spin models with no external field.
We parametrize the interface (running in the x direc-
tion) by z(x), with a pinned boundary condition at one
end, z(0) =zt). Then we can define a roughness (also
known as wall wandering or spatial anisotropy) ex-
ponent g by

((z(x) —zo) &' =x~

An interface is localized (corresponding to a facet) when
the left-hand size of (1) is bounded as x ~ (which im-

plies (=0); otherwise it is called rough. In ordinary sys-
tems in d =2 dimensions we always have /= —,

' .
Let us now consider a toy model consisting of a rec-

tangular lattice with all ferromagnetic bonds. The bonds
in the x direction are all taken equal to a constant J/2;
however, those in the z direction have the value V(z)/2,
where V(z) is a quasiperiodic function of z. The energy
of an interface is given by

H=Q, IV(z(x))+J Iz(x+ I) —z(x) II. (2)

Nov . in the limit T—0, we can work to O(e ):

W(x+1;=) —W(x;=) =XW(x;z)—:—V(z) W(x;=)+e [t(=,z+ I) W(x;z+ I)+t(z, z —I)W(x;z —I)], (4)
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where

V(=) —= I
—exp[ —V(=)/T],

and

V(z), both described by V(z) =—i (r '=), where r is the
golden ratio, r =(—I + ~5)/2, and i (& ) is periodic, i (&

+ I ) —= i (y). Case I is the piecewise constant "Fibonac-
ci" potential:

=exp I
—[V(z ) + V(z+ I )]/2T].

Note that, for large x, the same x dependence follows
I'rom the continuum form dW/dr =X„„,II ( ), where

L„„,—=In(I+.E) has the same form as (4) but with
V(z) = V(=)/T, and t(z, z+ I ) =f(l V(z) —V(z+ I )]/
2T) for f(y) —= (sinhy)/y. We will consider, in general,
any quasiperiodic V(z) and t(z, z+ I ), not just the cases
arising from (2). In particular, the Penrose tiling model
(see below) has temperature indepen-dent V(z ) and
t(z, z+ I) as T—0.

The operator —L is that of the Schrodinger equation
defined on a discrete chain, with V(-) the potential and
t(z, +zI) the hopping. The equilibrium state of the in-

terface is specified by the eigenvector of L with max-
imum eigenvalue, which corresponds to the ground-state
eigenfunction of the Schrodinger equation. When the
ground state (and the states near it) are localized, we
have a localized interface. When the ground state is ex-
tended, we have a rough interface. From the scaling of
the eigenfunctions near the ground state, one can under-
stand the correlations of the interface, in particular its
roughness exponent j.

What follows is the argument for how the exponent j
can be extracted from the (known) exponents for the
scaling of the energies of eigenstates near the ground
state. We can decompose W(x;z) into eigenstates
y~ (=):

W(x;z) =e „dp(E)e ' "cpyE(z),

where p(E) is the integrated density of states and Eo is

the ground-state energy. (For simplicity, we consider
the continuous formulation of the x evolution. ) With the
pinned boundary condition, W(0;z) =6(z —z ), it is ob-
vious that the initial "wave packet" contains a broad en-

ergy spectrum. After x steps, most of the amplitudes
will have decayed to zero apart from those with
E —Eo & I/x. Now, an eigenfunction with energy E
close to Eo looks indistinguishable from the ground state
up to a coherence length g, which (see below) scales as

(6)

for some exponent a. The surviving eigenstates in

W(x;z ), then, are coherent up to
i
z

i

=g„beyond
which they interfere destructively. Hence (z )'i =(„
and

(7)

For the case t(z, z+ I)—=const, equations of form (4)
have been intensively studied for two special cases of

An essential method for previous studies of the one-
dimensional quasiperiodic chain is the 2&2 transfer ma-
trices A~(z) which, for a given energy E, propagate the
corresponding eigenfunction y~(z) down the chain
(y~(:+ I), y~(z)) =A~(=)(y~(:), pE(z —

I )). For
the Fibonacci case (II), the matrix Az(z) just takes on
one of two values A|,Ao depending on whether V(=) =U
or O. One can construct a renormalization group for the
matrices by taking advantage of the self-similarity of the
Fibonacci lattice under a kind of decimation called
"delation. " One blocks together the pair UO U and
U 0, which reduces the number of sites by a rescale
factor z. This induces an iteration of the transfer ma-
trices which propagate the wave function on the decimat-
ed lattice: A„+] =A„A„]. The nature of an eigenstate
is just determined by its 8 ] and Ao.

It remains to derive (6) for the Fibonacci case (8).
Under the renormalization group, we produce a sequence
of eigenstates with coherence lengths g, „and growing
differences hA„=A„—4„, where the A„are the
iterates of the ground-state transfer matrices. An eigen-
state is coherent with the ground state up to g, if its next
iterate is coherent up to g, /r: Hence,
Also, hA„=6"620, where 6 is the more relevant eigen-
value of the matrix iteration. Finally, B,AD —(E—Eo), from the definition of (A|,A0). Now, g, . „=I

at the same step where AA„= I; solving for g, 0 in terms
of E —Eo, we see that (6) holds with a =In r/In6.

It turns out that 6 is just the eigenvalue corresponding
to the simple one-dimensional map obeyed by the traces
of the transfer matrices. For the ground state (corre-
sponding to the two-cycle of the trace map), Kohmoto,
Sutherland, and Tang found

6 = [KI + (KI'+ 4) 'i']/2, KI =—(25+ 161) 'i',

~here I is the invariant of the trace map, given by

(10a)

I = (e /2) [Ur 00/l DU+ Eo(1/too roo/r0~ ) ] . ( I Qb)

In this case, V(=) is always either 0 or (j, so that at
T=0 there are many degenerate locations for a ground-
state interface, as in the uniform case. Equation (8) pro-
duces a Fibonacci sequence of values, OOUOUOO

Our Eq. (4) is a generalization of this case to two values
of the hopping coefficient, t(z, z+ I) =too or rot. Case 2
is Harper's potential,

~ () ) =Ucos(2~y).
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g= 21nr(T/J) (i 2)

The behavior (12) follows whether or not tpp =tpp.
Numerical iteration of (4) using the Fibonacci poten-

tial (8) with U= 1
—exp( —0.4), fitted to (1) over the

range 10 & x & 10, gave (=0.35 ~ 0.01 and 0.27
~ 0.02 for T/J =0.4 and 0.3, respectively, in full agree-
ment with the values 0.347 and 0.280 predicted from
(I ob).

Next we consider the other case, that of Harper's po-
tential (9). Take the case of constant t(z, z+1)—:t: If
Ue /t & 2 (Ue /t & 2), then almost all states, ' in

particular those near the ground state, '' are extended
(localized). This implies a roughening temperature T~
such that the interface is localized for T & TR and
rough, with j= —,', for T & TR In the actual m. odel de-
rived from (2) and (9), t(z, z+1) has an (analytic)
quasiperiodic modulation. We still expect a second-
order roughening transition in this case, although the
value of T~ (and possibly of () will be changed.

Exactly at T=TR, we expect critical scaling near the
ground state with a nontrivial j. Indeed, using (7) we
extract j=0.421 from Ref. 11. Furthermore, fluctua-
tions of the interface will diverge at TR characterized by
correlation lengths g~~

—
~
T —T~

~

"' and g~ —
~
T

—TR
~

in the x and z directions, respectively, with

Recalling Eq. (7), we have finally

j= I n r/I n 6,

where 6 is given by Eqs. (10). As a check, note that for
the uniform case, V(z)—:0, tpp—= tpp, then 1=0, and so
6 = r, which indeed gives the usual j= —,

'
.

The roughness exponent g is nonzero, and so the inter-
face has unbounded fluctuations, but these are anoma-
lously weak: g & —,', and the exponent g depends con-
tinuously on the temperature through I. When U, too,
and to~ are temperature independent, then as T- 0, Ep

const and (10b) implies 1=e; as I ~, 6—I'
so that

grid, or dual, construction of the Penrose tiling': The
optimal interface runs normal to an edge direction
(which we will call the z direction). It consists of any
path of steps which have a positive projection on the I
direction. (See Fig. 1.) For a fixed starting point, zp,
the path is not unique, but is confined within a "lane, "
bounded by rows of tiles with + z edges. (These rows
are called "tracks" in Ref. 4. Consequently, the inter-
face is smooth at T=O.

There are two general classes of lanes (Fig. 1): nar-
row ones, which have a width zero in places, and wide
ones, which have a minimum of two sites in parallel.
The wide and narrow lanes are stacked vertically so as to
form a Fibonacci sequence, which we will number by
z=1,2, 3, . . . .

We now let imp(x;z) be the the number of paths (up
to x) in lane z: obviously it is larger for the wide lanes.
With use of the projection construction of the tiling, ' it
can be shown that the same sequence of environments re-
peats quasiperiodically along each lane. Thus each lane
has a well-defined entropy, Wp(x;z) =exp[S~,„,(z)x],
which is quasiperiodic in;: S~,„,(z) =s~,„,(r 'z),
where sl.,„,(y)—:s~,„,(y+ I ).

We next approach the interface fluctuations in the
same spirit as with the lattice model. At T) 0, the in-
terface may jump from one lane to the next (along a z
edge) with a Boltzmann cost e t . At low tempera-
tures we may take a continuum approximation in the x
direction, exactly as with the lattice model. In place of
V(z)/T, the potential term in the Schrodinger operator
in (4) is now V(z) = —Sl,„,(z). The form of s~,„,(y) is
similar to Eq. (8). We find that sl,.„,(y) ranges, depend-
ing on y, from 0.45158 to 0.45444 for narrow lanes (an
analytic result) and for wide lanes from 0.5403633 to
0.5403647 (numerical result). The hopping rate be-
tween lanes is also quasiperiodic as a function of z, and is
similar in form to the model with two hopping coef-
ficients, tpp=0. 47 and tpU=0. 44. Here t(z, z+ I ) & I

(i3)v~ = I, vii
= I/j=2. 38.

Here v& =1 is well known for the localization length of
the one-dimensional Schrodinger equation ' and v~ =

gv~~

follows from scaling. The interfacial free energy
satisfies hyperscaling: It scales as I/g~~ and so the ex-
ponent a, of the interface specific heat at TR is given by
a, =2 —I/j& 0.

We now study the interface roughening in the "cell"
model, defined on the version of the Penrose tiling with
two kinds of rhombi. ' The center of each rhombic cell
has one spin, with four ferromagnetic bonds (strength
J/2) to the spins in the neighboring rhombi. An inter-
face between ferromagnetic ground states is just a path
along the edges of the tiling, and its cost is J times its
length.

The T=0 interface paths can be found ' with the

wide

wide

narrow

FIG. 1. Part of two-dimensional Penrose tiling showing
three "lanes" (two wide and one narrow), Any path which al-
ways moves to the right and does not cross the shaded strips is
a ground-state interface; the union of these paths is shown bold
in the first lane. The vertical dashed lines in the first lane show
how it breaks up into two kinds of units, repeated quasiperiodi-
cally.
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reflects the reduction in entropy due to the constraint
that a hop must start from the edge of a lane.

Thus, the interface should look rough with an ex-
ponent behaving like (12) as T 0. However, there is
evidence that s~,„,(y) [and the analogous envelope func-
tion for t(z, z+ I )] is not exactly piecewise constant. We
speculate that this may lead to a crossover to a roughen-
ing transition at very low T [the exponents would differ
from (13) since s~,, „,(y) is nonanalytic. ]

In other, more generic 2D models (e.g. , with J0 de-
pending on local environment, ' or with farther-neighbor
interactions), we would expect the effective potential to
have a continuum of values (and include energy terms,
not just entropy terms). In this case, V(z) might better
be approximated by Harper's equation (9), which im-
plies a roughening transition.

We have not analyzed the case of d =3 here; clearly, a
quasiperiodic V(z) in the interface normal direction will
increase the tendency of the interface to be localized. In
fact, an argument based on the functional renormaliza-
tion group" suggests that the interface is always local-
ized in d = 3 dimensions.

We have also ignored the role of disorder, which seems
to be universal in the real alloys. "' An important kind
of disorder is "phason strain"' which involves rearrang-
ing tiles without introducing dislocations. A lattice-gas
model on a fixed lattice with quenched "phason" disor-
der should exhibit a roughening due to effective random
exchange as in Ref. 7.
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