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Tensorial Derivation of 1Vew Oscillator-Strength Sum Rules
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A tensorial method for the derivation of new sum rules for oscillator strengths and their moments and
for expressions of similar mathematical structure is presented. For illustration, the method is applied to
dipole transitions. Here new rules are found generalizing the Wigner-Kirkwood sum rules from one-
electron to many-electron atoms. As a second example a new total sum rule for coherently excited states
is reported and its relation to partial sum rules for fixed angular momentum transfer but incoherently ex-
cited states is shown.
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The development of Racah algebra has led to a deep
understanding of atomic, molecular, and nuclear spectra.
Since the theoretical foundations were done so long ago,
it is surprising that an almost obvious application of
standard Racah algebra to construct sum rules for oscil-
lator strengths, for their moments, and for expressions
with similar mathematical structure seems to be un-

known. This paper presents and discusses these new sum
rules.

Let us consider a rotationally invariant conservative
system with energy eigenstates defined by the Schro-
dinger equation

HI yjm) =Eyj
l yjm)

tween energy eigenstates yj y'j'. Electric and mag-
netic multipole transitions and inelastic form factors are
familiar examples for this; the right-hand side of Eq. (2)
has then the structure of an oscillator strength or of a
moment of it. The summation over y' runs over all al-
lowed final states with given j' value.

For the evaluation of the sum in Eq. (2), it is con-
venient to introduce the multiple commutator

C,'"'(T„)= [H, [0, . . [0,Ti, ]. . . ]]

n-fold

which is again an irreducible spherical tensor operator of
rank k. With Eq. (1) the relation

Here j and m label the total angular momentum and its
component; y stands for all other quantum numbers.

The subject of this paper is the evaluation of the quanti-
ties

(yj IICj," (T&)ll yj'') =(E„j—E ) "(yj IITj,. l
y'g') (4)

follows which is used to eliminate the energy factor in
Eq. (2). Let us write in Eq. (2)

S,'"'=y, 2(E„—E„, )"i(yjllT, lly'j'')
~

', (2)

where n is a nonnegative integer and T~ is an irreducible
spherical tensor of rank k. The reduced matrix element'
(yjIITt, lly'j') describes a transition of the system be-

and we find, with the help of Eq. (4),

f (yjll Tk II y'j')
f

= ( —
1 ) j j( yj I Tj, I yj'') ( yj

''
I I Tj, I I yj )

giI"i =( —1)' jg, , I(yjllCti"'(Tk)ll yj'')(yj''IITj, II yj)+ ( —1)"(yj il Ti, ll yj'')(y'j 'IICi,'" (Tk)ll yj )}

k] k2 E
g„(yj 'IITg, llyj "&(yj "IIT+,llyj&=g(2j"+I)( —I) +i (2j(+I)'& ', „1(yj'IIIT xy& )~ &llyyj&, '(6)

E

The essential point is now that the right-hand side of Eq. (5) allows for a tensorial recoupling transformation. It is evi-
dent that Eq. (5) contains two angular momentum couplings with the coupling scheme (j,k)j', (j', k)j. These can be
recoupled to (k, k)K, (Kj)j; this transformation is proportional to the recoupling coefficient ((k, k)Kj

~ (j,k)j', k) j1.
The reader less familiar with Racah algebra may inspect the standard expression for the reduced matrix element of a
tensorial product [Tt, ,

x Tk, ] ' ' of two tensors Tt, ,
and Tt, , acting on the same system; the inverse of this transforma-

tion is

which follows simply from the orthogonality of the 6-j symbols. We can now employ Eq. (6) to evaluate the sum Sq"
and find the final result

kka
S "'i=( j'21+)g( —1) +' '(2K+1)' " . , (yjii[Ci,'"'(Tj, )x Tjt]' '+( —1)"[Tkxct,'"'(T'))' 'ilyj) (7).
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I stress that Eq. (7) represents the sum S~" by a finite number of terms because the summation over K is restricted to
integers 0 (K (min(2j, 2k), whereas the original summation over y' in Eq. (2) is infinite and includes moreover an
integration over the continuum part of the spectrum. As corollary, we can evaluate also the total sum, i.e., sum over all
final angular momenta j'. With help of the orthogonality relation for 6-j symbols, we find only from the scalar product
(K =0) a contribution to the total sum,

Q, S1,
" =(2j+1) ' (yjllCI, " (T&). Ti, +( —1)"Tk. Cj, " (Tk)llyj)j (7')

Let us come to the physical origin and to the utility of
Eqs. (7) and (7'). The origin for the transformation Eq.
(6) and therefore for the sum rules is the completeness
relation

! yjm)(yjm! =

for the total spectrum. Equation (7') follows directly
from this completeness. However, for a rotationally in-

variant system, the spectrum is complete also within
each subspace of a fixed value of the total angular
momentum. Therefore partial sum rules where the sum-

mation runs only over non-angular-momentum quantum
numbers do exist. Equation (7) is the most general re-

f i, =[—2' l(2j+ I)]g, ! (yjm! e r! y'j'm')!

suit in this context. The sum rules given above can be
utilized for many physical processes. For example, one
can write down partial and total sum rules for arbitrary
electric and magnetic multipole transitions, for general-
ized oscillator strengths (inelastic form factors), for
two-photon transitions, and so on. I remark also that
such sum rules are important from the practical view-

point. They allow us, e.g. , to extrapolate into spectral re-

gions that are inaccessible experimentally; they serve
also as checks for consistency and accuracy in numerical
computations.

For the purpose of illustration, I apply the above
method to the oscillator strength for electric dipole tran-
sitions in atoms:

(8)

Here atomic units h =m =e =1 are used; the oscillator strength itself is dimensionless. In Eq. (8), e is the polarization
vector, r =g„r„ is the dipole operator, and

~i vi
'' » )i''

is the transition frequency. Summation over m and m' yields

f„„,,
= —[2' „,/3(2j+ I)]!(yjllrlly'j')!

Let us now ask for partial sums performed at fixed values of hj =j' —j =0, + 1;

y' 'YJT j
With Ti = Ti =r and Ci' (r) = —ip, where p is the dipole operator in velocity representation, one finds from Eq. (7)

~ I
1 1 K

g ( ) i j(2K+1) '. . . , (yjll[rxp] —[pxr] llyj).3(2j+ I ), ,J J J
(10)

Note that in Eq. (10) only the terms K=0 and I con-
tribute because of the symmetry of the second-rank
tensor, [r x p]1 1 = [p x r] . The scalar contribution
(K =0) leads to the canonical commutation relation,

[rxp][pxr]3x3+
where N is the number of electrons. This scalar contri-
bution describes the total sum

, oui =N.

This well-known Thomas-Reiche-Kuhn sum rule is in
fact easily obtained by summing of Eq. (10) over j'.
The orthogonality for 6-j symbols then restricts the sum
over K to the sole value K=0; see also Eq. (7'). The
vector contribution (K= 1 ) can be expressed in terms of

[(~ —~)+ —,
' (j' j)(j'+j+ I )M ]—,3(2j+1)

with M given by

M =j[(j +1)(2j+1)] '~ (yjllrxpllyj) (13)

In the trivial case of a nonrelativistic one-electron atom,

[rxp) ' = —[pxr]"'=i2 ' '(rxp)

Evaluation of the 6-j symbols in Eq. (10) yields finally
the result
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the above result is known as the Wigner-Kirkwood sum
rules; see also Fano and Cooper. Putting rxp=1, j =1,
and N =1, we find M =1 and

To see this, consider instead of the m-averaged
oscillator-strength, Eq. (10), the oscillator strength for a
coherently populated initial state,

rYpt = (l ' —l ) (21'+ 1 ) (l '+ l + 1 )/6 (2l + 1 ), (i 2') 7f', '= —2co g, g c„,(yjm
~
e r yj''m')

in agreement with Ref. 6. The sum rules given in Eq.
(12) may therefore be regarded as generalization of the
Wigner-Kirkwood sum rules for one-electron atoms to
arbitrary many-electron atoms. The quantity M defined
in (13) can be determined experimentally by the obser-
vation of the absorption and emission of circularly polar-
ized light by an oriented state.

(i 4)
where the c„,'s are excitation amplitudes normalized to

~c„, =1. It is straightforward to eliminate again
the frequency and to sum over all final states. Following
formally an analysis developed by Fano and Macek, we
can separate t". and i from r and p with use of the
recoupling formula

(e r)(e* p) = —,
' (r p)+ —,

' (ex e*) (rxp)+ [ex e] '-[rxp]
where the three terms describe unpolarized, circularly polarized, and linearly polarized radiation, respectively. With
help of the canonical commutator, we find

, f' „, , =lV —sin2P g„,m ~c„, ~
M, (i 6)

where M is given by Eq. (13) and l3=+45' and —45
for left and right circularly polarized light, respectively.
According to Eq. (16), the quantity M can be deter-
mined from oscillator-strength measurements provided
that the initial state is oriented, i.e. , ~

c „, ~

A
~ c„, ~, and

that the polarization is circular. So it is seen that an ini-
tial orientation in Eq. (14) in general destroys a simple
Thomas-Reiche-Kuhn sum rule. On the other hand, an
aligned initial state does not contribute to the sum rule
Eq. (15) because of the symmetry [r x p]

' = [p x r] " .

The quantity M can of course be calculated. We ex-
pect M to depend sensitively on electron-electron correla-
tions because the operator

rxp =L+K (i 7)

contains beyond the total orbital angular momentum,

r„xp„,

the correlation operator

K =g„~,r„xp (19)

which in contrast to L consists of two-particle operators.
So far I have not introduced any approximation.

Often, however, angular momenta couple weakly to each
other. In this case, the matrix element appearing in Eq.
(13) can then be analyzed further. Consider, e.g. , a

hyperfine multiplet as initial state. Because rxp does

g„,, ,f' „, =iV —i g „c,c„*(axe*).(yjm ~rxp~ yjn)

If we assume a convenient Cartesian detector frame
with the = axis parallel to the direction of light propaga-
tion, the polarization vector then reads i= (cosP, i sinP,
0). The Wigner-Eckart theorem, finally, applied to the
matrix element on the right-hand side of Eq. (15), yields
the desired result

(i 5)

not act in the nuclear-spin space, we get in obvious nota-
tion the reduction '

( y(Jl )F II r x p I I y(JI )F)

J F I=( —1) + + +'(2F+1)'F J 1
(yJllrxpl yJ)

In the case of (LS)J coupling, the last matrix element
can be reduced further along the same lines. In this situ-
ation only one matrix element, (yLllrxpll yL), describes
all partial sum rules within the whole multiplet.
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