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chaotic response. In this region the transition to chaotic
behavior from periodic motion is via a saddle-node bifur-
cation at the high-frequency side of a tongue. On the
low-frequency side of each tongue, the transition to
chaos is via a saddle-node bifurcation below the bump
and via period doubling above the bump. We do not ob-
serve hysteresis for any transition.

Accurate determination of the critical line is necessary
for a good measurement of the dimension of the quasi-
periodic set at criticality. The most precise method we
have found is observation of a change in the attractor as
the transition occurs. Figures 2(a) and 2(b) show the
attractor just below and just above the critical line. The
appearance of chaos is obvious in Fig. 2(b). The ap-
parent folding of the attractor at the lower left is due to
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I
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the choice of projection. In fact, this is part of an open
loop. Both the Lyapunov exponent and the dimension of
the attractor were found to be too inaccurate and expen-
sive of computer time to locate the critical line precisely,
while the Fourier transform of the time series gave ambi-
guous results. A change in the attractor was used as a
discriminant for the chaotic transition because, over the
full length of the critical line, it was a sharper criterion
than a change in the appearance of the power spectrum.
Folding and breakup of the torus as evidence of the onset
of chaos were generally apparent at lower amplitudes
than any change in the power spectrum because of the
extreme weakness of the chaos in this experiment. A
chaotic spectrum was never found without folding and
breakup of the attractor as well, whereas it was common
to observe the reverse, evidence of chaos on the torus and
a very clean Fourier transform.

Once the critical line was located, it was scanned au-
tomatically by computer and 333 tongues were found
with widths as small as 1 Hz. The algorithm could not
find tongues narrower than 10 Hz reliably, so only wider
ones were used in the computation of dimension. The
boundaries of the tongues, however, are accurate to
within 1 Hz. The dimension, D, was computed from the
formula

where the S; are the distances between adjacent tongues
and S is the distance between the —

,'and —,
' tongues.

The dimension was computed as a function of all tongues
that exceeded a certain width and then extrapolated to
zero width. Using the 287 tongues wider than 10 Hz be-
tween the

~
and —,

' phase-locking tongues, we have mea-
sured the dimension of the quasiperiodic set to be
0.795 ~ 0.005. This value did not change if we included
all tongues found. If the measurement of dimension is
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the —
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the result is the same within errors. Local measurement
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FIG. 2. Attractor along a line parallel to the low-frequency
edge of the —,

' phase-locking zone, made by the projection of
the sample voltage triplet, (V„,V„+3,V„+6), onto the best-fit
plane. V„ is the oscillator voltage sampled at the nth cycle of
the drive. The attractor (a) 10 mV below the critical line, (b)
10 mV above the critical line.
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FIG. 3. Experimental measurement of f(a) (solid line) and
computed value from (I) (dashed line).
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of the dimension at the golden mean gave 0.75 ~0.02.
The dashed line in Fig. 2 is our best estimate of where
the dimension of the quasiperiodic set would be 0.87
based on the above algorithm. Careful inspection of the
attractor reveals no chaotic behavior in the vicinity of
this line. Even though the quasiperiodic set at criticality
does not have the dimension of the model, there still ap-
pears to be a complete devil's staircase of rational
phase-locking zones there.

Turning to predictions of behavior at the critical line
and at the golden mean we show the function f(a) com-
puted from the time series in Fig. 3. In order to compute
f(a), we first embedded the attractor in three dimen-
sions to prevent it from crossing itself and then formed a
smoothed attractor by averaging points locally to remove
experimental noise. A normalized distance along the at-
tractor, x (0 ( x ( 1), was then computed for each da-
tum by our projecting it onto the smoothed attractor.
The quantities q and dr/dq were then computed from the
partition function

where the l; are the distances between adjacent points on
the attractor and the probabilities, 1/p;, were set equal to
the number of points analyzed, N The f(a) cur.ves were
then computed with use of the Legendre transforma-
tion,

a=dr/dq, f(a) =qa —r.

The measured curve is the average of sixteen curves each
calculated from a difrerent time series 2048 points long.
The experimental curve does not agree with the predic-
tions of the theory, indicating that the spectrum of criti-
cal exponents, or equivalently, the set of generalized di-
mensions is different from the circle map (1).

A first-return map computed from the same smoothed

attractor used to compute f(a) is shown in Fig. 4. The
function is smooth with continuous derivatives and has
no discontinuities. Careful inspection of the map reveals
at least seven inflection points. The function of Eq. (2)
at the golden mean did not converge but was found to
switch between the two values —3,3+ 0. 1 and —2.7
~0.2 where we have used the center of the tongues for
the values of the A„.

The power spectrum of the driven oscillator at the
golden mean and the onset of chaos is shown in Fig. 5.
Seven generations of frequency scaling by the golden
mean are displayed in the plot. The lowest-frequency
components are slightly broadened because of a small
amount of chaotic motion. There is some resemblance of
this spectrum to the prediction of Ostlund et al. We ob-
serve many of the subharmonic peaks, which are related
by power laws because of the algebraic properties of the
golden mean, but the relative amplitudes deviate consid-
erably from the theory, in some cases by 2 orders of
magnitude.

We have shown that there are deviations from univer-
sality in the transition to chaos from quasiperiodicity as
determined by the dimension of the quasiperiodic set at
the critical line. In the dynamical system we studied ex-
perimentally, the dimension is 0.795 0.005, unlike pre-
viously studied systems which have a dimension of 0.87.
The local predictions of the standard model at the golden
mean of the shape of the f(a) curve, the scaling of the
power spectrum, and the convergence rate of the tongues
are also different in our experiment. Unlike the period-
doubling route to chaos which has a unique transition to
chaos with constants derivable from the logistic map, '

the quasiperiodic route is associated with at least two
sets of numbers. One set is well described by the circle
map (1). It is unknown at this time whether the results
of this experiment can be derived from a map.
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FIG. 4. First-return map at the critical line computed from

the three-dimensional attractor, (V„,V„+1,V„~z), with the
winding number equal to the golden mean.

FIG. 5. Frequency-scaled power spectrum of the relaxation
oscillator at the critical line with winding number equal to the
golden mean.
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