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Coexistence of Order and Disorder and Reentrance in an Exactly Solvable Model
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We show in this Letter exact results for the Ising model on the two-dimensional kagomeé lattice with
nearest- and next-nearest-neighbor interactions J, and J,. In some regions of phase space, we find a
nonzero critical temperature despite a finite zero-point entropy. For a narrow range of J,/J, we find
successive transitions with a reentrance at low temperature. We studied the nature of order by Monte
Carlo method and found that in these regions one sublattice remains disordered below the transition and
down to zero temperature except in the reentrant region. Thus disorder can coexist with order at equi-

librium.

PACS numbers: 05.50.+q, 75.40.Mg

One of the most striking features of frustrated systems
is the high degeneracy of the ground state (GS). The
questions which arise are whether or not such a degen-
eracy survives at finite temperatures and how it affects
thermodynamic behavior. In the case of Ising spins, it
has been'? pointed out that thermal and quenched disor-
der may select a finite number of particular GS, leading
to a well-defined ordered phase at low temperatures. Ex-
tension of this idea to XY and Heisenberg® systems has
been carried out. Such conclusions rely on low-tem-
perature expansions which require that the selected GS
upon which low-temperature expansions are performed
should differ from the other GS by an infinite number of
spin orientations in the thermodynamic limit.* This con-
dition is not always fulfilled in frustrated systems such as
the fully frustrated simple cubic lattice with Ising spins*
and systems with finite zero-point entropy. The high GS
degeneracy often yields unexpected effects such as par-
tial disordering in the ordered phase in the fully frustrat-
ed simple cubic Ising lattice® and particular type of exci-
tations® observed in Monte Carlo (MC) simulations.

In this Letter, we study the Ising model on the ka-
gome lattice shown in Fig. 1. This system with nearest-

neighbor interactions J, has been exactly solved a long,4I

time ago.” In the present work, next-nearest-neighbor
interactions J, are taken into account. We have ob-
tained the exact expression for the free energy from
which exact results for the internal energy, specific heat,
and entropy can be derived. The model has a finite
zero-point entropy and undergoes a transition at a finite
temperature. There are four critical lines in the space
(K\,K,), where K| ,=J,,/kgT. One of the most strik-
ing points found here is the existence of a reentrant
phase in a narrow range of J,/J|: As the temperature
decreases, the system passes through the paramagnetic
phase, an ordered phase, the reentrant paramagnetic
phase, and the ferromagnetic phase. To investigate the
nature of the ordering below the transition, we per-
formed MC simulations. The results show that below
the transition, one sublattice remains completely disor-
dered and, except in the reentrant region, this partial dis-
order persists down to 7T =0. The coexistence of order
and disorder thus gives rise to a new type of ordering. In
the following we show and discuss our results in detail.

Let us consider the Ising spins o; on the kagomeé lat-
tice of NV sites shown in Fig. 1. We take into account
the nearest-neighbor interactions J; and next-nearest-
neighbor interactions J,. The partition function is writ-
ten as

Z=Yu [Twiexplk (01054 6205+ 0305+ 6405+ 6102+ 6304) + K12 (0104 + 0307)], ¢D)

where K| ,=J,/ksT and where the sum is performed
over all spin configurations, the product is taken over all
elementary cells, and periodic boundary conditions are
imposed. Since there is no crossing bond interaction, our
system in principle can be transformed into an exactly
solvable free-fermion model.® Note that our model is
somewhat similar to the brickboard Ising lattice recently
studied by several authors.®~!' To obtain the exact solu-
tion of our model, we decimate the central spin of each
elementary cell of the lattice. In doing so, we obtain a
checkerboard Ising model with multispin interactions.
This resulting model is equivalent to a symmetrical
sixteen-vertex model,'>"'* which satisfies the free-
fermion condition.'® In this case an exact solution can

FIG. 1. Kagome lattice. Interactions between nearest
neighbors and between next-nearest neighbors, J, and J,, are
denoted by black and white bonds, respectively. The lattice
sites in a cell are numbered for decimation.
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be obtained and the free energy per spin is given by

= ;48”7; f_””f_””deahpln[A +2Bcos0+2Ccosp+2D cos(0—¢)+2F cos(0+ ¢)], 2)
with A =wi+wi+ wi+w?, B =003~ 004, C=0 04— 003, D =w304 — w70y, and F =w3w4 — Wsw¢, Where
o =exp(2K2+2K1)cosh(4K1)+exp(—2K2—2K|)+exp(2[(2—2K1)+exp(—2K2+2K1)+4cosh(2K1),
w>=w; —8cosh(2K,),
03 =w,4 =exp(2K2+2K1)cosh(4K1)+exp(—2K2—2K1)—exp(2K2—2K,)—cxp(—2K2+2K1), (2a)
w5=w6=exp(2K2+2K1)cosh(4K1)—exp(—2Kz—-2K1)+exp(2K2—2K1)—exp(—2K2+2K1),
w7 =ws =exp(2K2+2K1)cosh(4K1)—exp(—2K2—2K1)—exp(2K2—2K|)+exp(—2K2+2K|).
The critical condition '* for this model is
3 lexp(2K |+ 2K ;) cosh(4K ) +exp(— 2K, —2K,)1+cosh(2K,—2K ) +2cosh(2K )
=2max{7 [exp(2K|+2K;)cosh (4K ) +exp(— 2K, —2K,)]; cosh(2K, — 2K ,); coshK )}, (3)

which is decomposed into four critical lines depending on
the values of J| and J,. The singularity of F is every-
where logarithmic. Furthermore, our model possesses a
disorder line'>!® for J, <0 and 7> T., where T, is the
critical temperature. Along the disorder line, the parti-
tion function is zero dimensional and the correlation
functions behave as in one dimension. The internal ener-
gy U, the specific heat C,, and the entropy S can be ob-
tained from Eq. (2) by successive differentiations. In
Fig. 2 we show the phase diagram in (K,K,) space.
Several important remarks are in order.

(i) In the frustrated regions I, II, and III, the system
has a finite zero-point entropy which is So= % In2. This
can also be seen directly by considering the structure of
the GS: The spins on the elementary squares (sublattice
A) can be arranged to satisfy all horizontal and vertical
bonds, whatever the signs of J; and J, are, while the
central spins (sublattice B) have zero energy and there-
fore are freely flipping. Since the total number of spins

K |3
| v
1.
31 [\ 3
777777777777 ‘\\ K
AN\ !
I I
3f

FIG. 2. Phase diagram in the (K,,K;) space. The solid
curves are critical lines and the dashed curve is the disorder
line. The regions numbered I, II, III, and IV are the low-
temperature ordered phases.
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on sublattice B is N/3, the GS degeneracy is 2™/3, in
agreement with Sy given above. Note that in region III
there is one particular GS where the spins on sublattice
A are up and those on sublattice B are down. However,
this single GS does not contribute to the zero-point en-
tropy in the limit N — oo,

(ii) There is a finite critical temperature for a given
value of J,/J, except in a very narrow range of J,/J,
given below where there are several transitions, and
when J,=0 and J, <0 where there is no transition as
found earlier.” Besides, for our model the Hoever-
Wolff-Zittartz conjecture'” does not apply: Though any
two GS’s in our model are connected by a succession of
purely local transformations, a phase transition does
occur at finite temperature.

Giii) In a very narrow range of J,/J, which is
[—0.91, —1] with J, > 0, there are successive transitions
with decreasing temperature: A trajectory defined by
K>/Ki=a, where a€[—0091,—1] with K,>0, will
cross the critical line of region III twice before crossing
the disorder line and then critical line of region IV.
These multiple crossings cannot be seen on the scale of
Fig. 2. We represent in Fig. 3 these successive transi-
tions in the space (a,T), where a =J,/J,. One observes
that for @ € [—0.91, — 1] there are the following succes-
sive phases with decreasing temperature: the paramag-
netic phase (P), an ordered phase (X), the reentrant P
phase, and a ferromagnetic (F) phase. We note that the
critical line of Fig. 3 has a vertical tangent and there is
an end point at a=—1 and 7 =0 where the two critical
lines and the disorder line meet. The inset of Fig. 3
shows this region schematically enlarged. The reen-
trance observed here may be related to the nature of or-
dering.

In view of the GS structure in the regions I, I, and III
of Fig. 2 (in region 1V, the GS is ferromagnetic), one
may ask the question what is the nature of the ordering
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FIG. 3. Phase diagram in the reentrant region (J, > 0) of
the space (a,T), where a=J,/J,. T is measured in units of
Ji/ks. Curves 1 and 2 correspond respectively to critical lines
of regions 111 and IV of Fig. 2, dashed line is the disorder line.
P, F, and X stand for paramagnetic, ferromagnetic, and an or-
dered phase, respectively. Inset: Schematically, enlarged re-
gion of the end point.

below the transition. To answer this, we performed ex-
tensive MC simulations using the sample size of
% x60x60 sites with periodic boundary conditions. The
MC procedure has been described in detail elsewhere
(see, e.g., Ref. 5). We discarded 10000 MC steps/spin
for equilibrating the system before averaging physical
quantities over the next 10000 MC steps/spin. The MC
results for internal energy U and specific heat C, per spin
are shown in Fig. 4, where exact results are also present-
ed for comparison. An excellent agreement with exact
results is observed (for example, U is identical up to the
fifth figure). We show in Fig. 5 the MC result for the
Edwards-Anderson sublattice order parameters g4 and
gp as functions of temperature in the case J; = —1 and
J,=—0.5J,. As is seen, sublattice 4 is ordered up to
the transition at 7, while sublattice B stays disordered at
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FIG. 4. Internal energy U and specific heat C., per spin, as
functions of temperature 7, for Jy=—1 and J,=—0.5J,.
Circles and crosses are Monte Carlo results for U and C,, re-
spectively. Curves are results from exact solution. Divergence
of C, is indicated by vertical arrow.

all temperatures. This result is remarkable enough; it
shows that order and disorder can coexist in an equilibri-
um state (the equilibrium in MC simulations has been
verified not only by comparing U and C, with the exact
results but also by looking at the time dependence of g4
and gg). The same behavior is seen in the three frustrat-
ed regions I, 11, and III of Fig. 2 except in the reentrant
zone. A similar situation was also numerically observed
in some range of temperature in another model.> In our
opinion, the coexistence of order and disorder occurs
each time the GS possesses unconnected freely flipping
sets of spin.

We have also calculated by MC simulations the stag-
gered susceptibility and spatial correlation functions
from which the critical exponents associated with the
transition are computed. The universality class is that of
the pure Ising model in two dimensions. The details of
MC results, specially in the reentrant region, will be re-
ported elsewhere.

We now discuss the connection between our model and
the random-field problem. Since the B spins are free to
flip in the frustrated regions as discussed above, they act
on their neighboring A spins as an annealed random
field. It is easy to see that the probability distribution of
this random field at an A site is given by

PH)=1DRsH)+sH+2J)+5(H—2J)], (4)

namely, the random field is diluted. Moreover, this field
distribution is correlated because each B spin acts on
four 4 spins. Since the B spins are completely disor-
dered at all temperatures it is reasonable to consider this
effective “random”-field distribution as quenched. In
addition to possible local annealed effects, the phase
transition in our model at 70 may be thus a conse-
quence of the above-mentioned dilution and correlation
of the random-field distribution. We recall that such a
transition is absent in the two-dimensional random-field
Ising model. '8
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FIG. 5. Monte Carlo results for temperature dependence of
sublattice Edwards-Anderson order parameters g4 and gg
(crosses and circles, respectively) in the case J,=—1 and
J,=—0.5J,. Dashed lines are drawn as guides to the eye.
Note that exact solution gives the critical temperature 7. for
this case at =0.693|J, | /ks.
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Before concluding, we emphasize that the present solv-
able model contains one of the most interesting and fun-
damental aspects of physics of frustrated systems, that is
the reentrant phenomenon which has been experimental-
ly observed in various systems. We believe that the
necessary, but not sufficient, condition for the occurrence
of reentrance at low temperature is the existence of par-
tial disorder in a high-temperature ordered phase (see
Fig. 3). The partial disorder just compensates the loss of
entropy due to the partial ordering of the high-temper-
ature phase. Finally, we note that the existence of the
disorder line in the reentrant paramagnetic phase (see
Fig. 3) may also be necessary for the change of ordering
from the high-temperature ordered phase to the low-
temperature one. In the narrow reentrant paramagnetic
region, preordering fluctuations with different sym-
metries exist near each critical line; they are separated
by the disorder line: The system needs to forget the
memory of its past.

In conclusion, let us mention that frustrated Ising spin
systems with infinite GS degeneracy have been subject to
extensive studies.'® The existence of a phase transition
at finite temperature depends on the connectedness of the
different GS’s. When it is possible to make a low-
temperature expansion one may show that the system
can eventually select the GS for which the density of
low-lying excited states is maximum. This process has
been called order by disorder.! On the other hand,
zero-temperature disorder may contaminate the whole
system at finite temperature leading to no phase transi-
tion at all.2® In this Letter, we have shown that a third
alternative is possible, namely, the one where partial or-
der coexists at finite temperature with partial disorder
below the transition. This possibility can be called order
with disorder. This new type of ordering may shed light
on the understanding of reentrant phenomena.
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