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Slow-Motion Scattering and Coalescence of Maximally Charged Black Holes
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We study systems consisting of several maximally charged, nonrotating black holes ("Reissner-
Nordstrom" black holes) interacting with one another. We present an effective action for the system in

the slow-motion, fully strong-field regime. We give an exact calculation of black-hole-black-hole
scattering and coalescence in the slow-motion (but strong-field) limit.
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The two-body problem for black holes can be solved in

at least one known case, the limiting case of two widely
separated, slowly moving black holes. This is the slow-

motion, weak-field limit of gravity, and the problem
reduces to the Kepler problem —the two-body problem
of Newtonian gravity. In this Letter we will solve the
two-body problem for black holes in another limiting
case, that of two maximally charged, nonrotating black
holes that move slowly, but that are close to one
another —i.e., a system of two Reissner-Nordstrom '

black holes with charge Q and mass M, related by

Q =G 't M, with speeds v « c and separations r =GM/
c . Even though restricted to the slow-motion limit, this
is a problem in the full strong-field regime of gravity
coupled to electromagnetism, and it is perhaps surprising
that the problem can be solved analytically. Much work
on the uncharged n-body problem is general relativity
has shown it to be a difFicult problem, even for n =2.
Here we show that the problem becomes much simpler
for suitably charged bodies.

For maximally charged black holes, the motion
remains slow despite the strong fields, because (roughly
speaking) the electrostatic repulsion cancels the gravito-
static attraction, and the black holes move under the
influence of magnetic and gravitomagnetic (or "frame-
dragging") forces, which remain small as long as the ve-

locities remain small. ' This problem is almost certainly
irrelevant for astrophysics, since such highly charged
black holes would immediately neutralize themselves by
plasma processes. However, similar problems involving
rotating but uncharged black holes, or black holes which
have swallowed magnetic monopoles and become mag-
netically charged, might also be of astrophysical interest.

The slow-motion, strong-field problem has recently
been solved for magnetic monopoles in gauge theories
and in five-dimensional Kaluza-Klein theories, and for
solitons in the CP' model, on the basis of a method pro-
posed by Manton. In this method the kinetic energy is
viewed as a metric on configuration space and the trajec-

tories of the dynamical system become the geodesics of
this metric. Gibbons and Ruback recently discussed the
slow-motion, strong-field problem for maximal Reissner-
Nordstrom black holes, and they suggested that
Manton's method would likewise apply. We will show
here that it does.

A static system of n maximally charged nonrotating
black holes has four-metric and four-potential '

ds = —y dt +ydx
4 = —(1 —y ')dt,

where

y= 1++,m, /r„ (2)

V Y= 4~Yp (3)

with boundary condition y=1 at infinity, where V is the
Laplacian operator in the fxj regarded as coordinates on
Hat R . As the final stage of the calculation, p will be al-
lowed to tend to a sum of point masses,

y'p- g.m. B"'(x—x. ). (4)

At this stage, all the infinities will, miraculously enough,

here the a, b, c. . . =(1,2. . . n) are labels on the n black
holes, each of mass m„charge q, =m, and position x;
and r, =x —x„r,=

~
r,

~

=
~
x —x, ~. Units are such

that G =1=c. In this coordinate system, the event ho-
rizons of the black holes lie at the points x =x, .

We calculate the motions of the black holes perturba-
tively, in a slow-motion expansion. A difficulty arises:
The fields are singular at the x, and infinities occur in
the calculations. We choose to regularize the problem
by spreading out the sources a little: We replace the
pointlike black holes with a smooth distribution of
charged dust with density p (pressureless with charge-
to-mass ratio unity) and velocity v. Then y is also
smooth and given by
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cancel out, to leave a finite answer —regularization is

necessary, but not renormalization. A similar attempt to
treat the equations of motion of uncharged black holes
would fail; the maximally charged case is actually much
easier. Mathematically, it seems that a point particle
with q =I can be represented by a distribution, whereas
an uncharged particle cannot.

The calculation is now straightforward; details will be
published elsewhere. In outline: Allow the positions
x, (t) to be slowly varying functions of time t, and define
three-velocities v, =dx, /dt, which will be assumed small
and treated as being of first order O(v) in the slow-
motion expansion. Allow the metric and potential fields
to acquire perturbations also. The x, (t) will be the
dynamical variables in an effective action S,tr to be de-

rived from the exact action S in the O(t. ) approxima-
tion. Since we want first-order equations of motion, we
need to expand the exact action 5 through terms of
O(i ) around the exact, static solution (1) and (3). To
O(v ) in the perturbed Einstein-Maxwell equations, the
field perturbations are entirely determined in terms of
the matter perturbations by constraint equations (i.e. , no
radiation appears). Solve the constraints to express the
fields in terms of the matter variables Ip, vI. Substitute
these solutions into S to obtain the effective action S,~T.

Take the black-hole limit (4) to obtain an S,tr which is a
functional only of the x, (t) Finall.y, vary S,tr with
respect to the x, (t ) to derive first-order equations of
motion for the black holes.

The exact action of the system is

Sgrav+ Sem+ Scurrerlt+ Smatter

(s)

3VxQ =0,
4 4 (8b)

where the vector operations are with respect to the I re-
garded as Hat coordinates on R, and where K:——4z
x V (py v). In the black-hole limit, K g, m, v, /r, .

Equations (8) are linear combinations of Ampere s law,
and of the first-order supermomentum constraint in the
Arnowitt-Deser-Misner" Hamiltonian formulation of
general relativity. The Gauss's-law constraint and the
zeroth-order Hamiltonian constraint are solved by (1)
and (2); these latter constraints are time even and there-
fore are trivial in first order.

The solutions of (8) are

(9a)PxP = —3]ItI PxK —2+a —3y Pv,

(9b)VxQ = —4y VxK —4yVa+4ttVy —4y Vv;

here the first-order scalar fields a and v are functions of
integration, which can be determined by taking the
divergences of (9). In the black-hole limit (4), the con-
tribution of the scalar fields a and v to S,~ vanishes.

Substituting (9) into S and keeping terms up through
O(v2), we take the black-hole limit (4) and find that S
approaches a finite limit S,~. The action S,~ governs the
firs-order motion of n maximally charged nonrotating
black holes in the slow-motion limit:

(7a)P—=A —yN,

Q:—y N. (7b)
In terms of the first-order quantities P and Q, the first-
order field equations are

' d xd —gR+(bdy) — ' d xJ—gF + d xJ —gA„pu" — d xd —gp.16m" 16m ~

Here u" is the matter four-velocity, 2 =A„dx", and F is
the field strength. The boundary term of gravity is (bdy) VxpPxwhich we need not discuss further here. The functions to 3

be varied are the fields g„„and 0„, and the world lines
x"(s) of the matter trajectories; p is not varied freely,
but rather is adjusted to keep the matter conserved under
the other variations. The static solution is an extremum
of the exact action, so that terms linear in second-order
field perturbations vanish exactly in this expansion, and
only terms quadratic in first-order field pertu rbations
survive through O(v ). Furthermore, the first-order per-
turbations in quantities which are even under time rever-
sal vanish; these include first-order perturbations in g«
and g;~, and in A, . Thus, a general enough form of the
perturbed metric and potential is

dt'= —y 'dt'+2N dxdt+y'dx', (6a)
4 = —(1 —y ')dt+A. dx, (6b)

where y is defined by (2), and the only field perturba-
tions that contribute are the first-order quantities N and
A.

In fact, we shall use these quantities in combinations P
and Q which transform simply under gauge transforma-
tions:

expPx
tft

VxA =Vx (Vx K), (8.) S,a = Jt dt (Lr„,+L;„,),

where
L free ga ma +ga 2 ma &'a

3 f mc ~cmd rn mI,
J' d x I+2& +g g» I —,

' (r, ri, ) ~v, —vt,
~

—(r, xrt, ) (v, xvt, )].
~c cd c~d

(1Oa)

(lob)
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This action has the expected properties. It is the sum of a free part and an interaction part that is invariant under
Galilean boosts v, v, +u where u=(a constant three-velocity). It reproduces previously known results in the
Newtonian limit and in the test-particle limit. Remarkably, L;„t is a polynomial interaction among the black holes,
consisting precisely of quadratic, cubic, and quartic terms in the masses m, . Therefore, the black holes experience only
two-body, three-body, and four-body interactions. Variation of the x, (r) in S,tr gives the first-order equations of
motion for n black holes; the full space-time metric and potential can be reconstructed from Eq. (2), (6), (7), and (9).

Turn now to the two-body problem. The Lagrangean L~„,+L;„t becomes

Lg, h,dy= —M+ —,
' MV + —,

'
pv [[1+M/r] —2pM /r J, (11)

where, as usual, M =ml+mq, p =mlm2/M, V =(mdiv|
+ mviq)/M, and r =

~ x| =x2 ~. This system is complete-

ly integrable, and allows exact calculations of black-hole
scattering and coalescence in the slow-motion limit.

Let the two black holes approach each other from
infinity with asymptotic speed v (&1 and impact param-
eter b. As long as the slow-motion approximation is val-

id (see below), the speed t scales out of the problem,
and the outcome depends only on b/M We fin. d that
there is a critical value b„„,~

of b, outside of which the
black holes scatter back to infinity, and inside of which

they coalesce. In general, b„.,~
is found by solving the

polynomial equation

0 = ——b +9M b" —36pM b —36p M

In particular, for equally massive black holes, m
~
=m2,

b
~

= [3+ —,
' J3] '/ M = 2.3660M,

to be compared with the known value for black hole and
test particle,

= ( " ) '"M = 2.&981M.

According to Manton's scheme, the coe%cients of the
quadratic form over the v, in L are to be interpreted as a
metric form on configuration space R ". For the two-

body problem (11), this metric is

d~ Manton

=MdR +p[(1+M/r) —2pM /r jdr; (12)

it is Riemannian and complete. The geometry of
configuration space R under this metric is a flat R in

the c.m. coordinates IR1 times a curved R in the
{rl = [xl —xi). Because angular momentum is conserved,
the motion is restricted to a two-dimensional surface em-
bedded in the curved R . This surface is plotted in Fig.
1. The surface is asymptotically flat as r ~, and
asymptotically an infinite cone as r 0, the conical
deficit angle being z. In this diagram, a point on the sur-
face represents a three-geometry, by Eq. (2). A geodesic
on this surface represents an evolution of the black
holes —and consequently a space-time, through Eqs. (9).
The evolutions which result in coalescence are represent-

In the two-body problem, the slow-motion approxima-
tion remains valid for r)) i M. For scattering cases, it
remains valid throughout, and little energy is radiated in

electromagnetic or gravitational radiation, AE„d=v M.
The two black holes return to infinity as t

For coalescence cases, the two black holes approach
each other as t ~ according to r ~ t . The slow-

motion approximation eventually breaks down as the two
black holes approach to r =t. M. For coalescences with

b ( p
' M the system has a small enough angular

momentum to form a nearly maximal Kerr-Newman
black hole. Simple estimates suggest that a new black
hole has formed before the slow-motion approximation
breaks down; thus, in this case we expect there to be lit-
tle radiation, AErad = i M. In contrast, for coales-
cences with b )p

' M, the system has too much an-

gular momentum to form a Kerr-Newman black hole.
We speculate that in this case the system emits a sub-
stantial amount of radiation energy hE„d=[ M after
the slow-motion approximation breaks down at r =i M,
and then it settles down to a black hole. Technically,
formation of a naked singularity or escape are also possi-
bilities. These latter (b & p '/ M /, "radiation-loud" )
interactions occur only for mass ratios 0.21002 ~m|/
M ~0.78998.

FIG. 1. Manton geometry for the case ml =rn2, restricted to
a two-dimensional surface. A geodesic on this surface
represents the evolution of the two black-hole system. Circles
represent lines of constant separation of the black holes,
r

~
x~ —x2 ~. The throat is at r =M j[(b«,~/M) /3] '~ —tj

=0.366M. Circles above the throat are separated by br
=1.46M, below the throat by hr =0.0731M. The point r =0
lies infinitely far down the cone.
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ed by those geodesics which start at r =~ and pass
through the throat onto the cone.
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