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Molecular Kramers Degeneracy and Non-Abelian Adiabatic Phase Factors
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For a molecular system with an odd number of electrons, the electronic Hamiltonian possesses a two-
fold Kramers degeneracy for all nuclear configurations. It is shown that this leads to a non-Abelian
gauge-field term in the effective nuclear Hamiltonian, with permissible gauge transformations belonging
to SU(2). This should lead to observable effects analogous to the Berry phase for the nondegenerate
case. In particular, an atom in a slowly rotating electric field exhibits changes in its component of angu-
lar momentum along the field because of the non-Abelian phd. se factor.

PACS numbers: 03.65.Bz, 11.15.Kc, 32.60.+i, 33.10.Lb

The phase factor experienced by an eigenfunction of a
parameter-dependent Hamiltonian when the parameters
adiabatically traverse a closed path has recently become
a topic of considerable interest. Some aspects of the
phenomenon have been known for decades, ' but the
modern interest stems from the derivation of a general
phase factor formula in the context of a molecular
Born-Oppenheimer problem followed by its rederivation
and recasting in a more general context by Berry and
Simon. The generalization to degenerate eigenvalues
leads to the replacement of the phase factor by a unitary
transformation among the degenerate eigenfunctions
that have the properties of a non-Abelian gauge field.
This idea has been applied in the context of Born-
Oppenheimer treatments of molecular systems to degen-
erate states of the diatomic molecule, and to a model in

which nuclei are constrained to move in a manifold
where there is a degeneracy-producing symmetry. Here
I wish to point out that Kramers degeneracy in molecu-
lar systems furnishes a wide variety of systems in which
non-Abelian gauge fields play a role and should lead to
many applications in chemical physics and, by analogy,
in other fields as well. The only previous treatment of
this known to the author dealt only with a special case
for which the possibilities were limited. I have tried to

formulate this Letter in such a way that it can serve to
introduce the chemical physicist to the role of gauge
fields in his area, and also be of interest to those looking
for simple but nontrivial systems exhibiting gauge behav-
ior.

We consider an electronic Hamiltonian H(R) depend-
ing on nuclear coordinates R. We use three-dimensional
vector notation for R, but it will be evident that the re-
sults are generalizable to any number of dimensions and
to any Hamiltonian depending on continuously variable
parameters. For each R we have the eigenvalue equation

H(R) I ja(R)& =W, (R)
I ja(R)&,

where Latin letters j, k, . . . are used to denote energy
levels, and Greek letters a, P, . . . denote states within a
level if there is a degeneracy which holds for all R. Of
course, I have principally in mind the case of the twofold
Kramers degeneracy.

If R is displaced continuously along some closed curve
C starting at an origin 0, the eigenkets must change con-
tinuously in such a way as to satisfy (1) at each point. I
describe this by

I ja(C)(R)&=gk s lkp(0)&(kplS(C)(R) I ja&. (2)

I ja(C)(R+dR)& =gk
& I kp(C)(R)&&kp I

1+iG(R) dR I ja&, (3)

where G(R) is a Hermitean vector operator defined for each R. Combining (2) and (3), we find for the matrix repre-
sentation of S(C)(R),

S(C)(R+dR) =S(C)(R)[1+iG(R) dR),

which has the formal solution
pR PR rR

S(C)(R) =1+iJI 6(R') dR' — 6(R") dR" G(R') dR'+. . . .
p Jp Jp (4)

Applying this to a closed curve which is an infinitesimal rectangle in the xy plane with sides Ax and hy, and keeping
only leading terms, we easily find

BG„S(C) —1 =Axe i
Bx

alGy —[G„,G, ] .
By

(s)
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It is convenient to divide G(R) into two parts:

G(R) =f(R)+g(R),
where f(R) is block diagonal with respect to the energy levels, and g(R) has matrix elements only between states be-
longing to different levels. The form of g(R) is determined by the requirement that (1) must be satisfied at all points:

(&p I g(R) li && =&'[II'i (R) II'& «)] "kp(R) I &~(R)
I j~(R)&.

(j p! f(R)!ja) = —i(jp(R)!vja(R)). (8)

It is easy to show that the right-hand side of (5) is

identically block diagonal, as of course it should be, since
the closed path must return one to the same energy level.
The block-diagonal part depends on the choice of f. If,
for example, the eigenkets are required to be single-
valued functions of R, we must have S(C) = I, implying

6
f„,— f„+i[j„,f), ] = —i [g,gi, ld, (9)

Bx 6J
where the subscript d stands for the (block-)diagonal
part. Equation (9) can be thought of as applying to the
entire block-diagonal matrix or separately to each block.
On the other hand, if we choose f=0 corresponding to
adiabatic variation of R with time, we find

5 —I = —Ax Ay[gx, g~]d,

which, together with (7), gives the appropriate generali-
zation of the Berry formula ' for the nondegenerate
case.

We now specialize to the case of interest for this
Letter in which 0(R) commutes with the time-reversal
operator T for all R and in which the total spin is half-
odd integer (odd number of electrons) so that T = —l.
In this case, we have a twofold Kramers degeneracy for
each R. ' '' Specializing to a particular energy level and
suppressing the index j, we have two states ! a) and ! b&

for each R, related by

T!a& =!b&, T!b& = —
! a&. (10)

We note from (7) that g anticommutes with T. With
use of this along with (10) and the well-known properties
of T, one easily shows that the right-hand side of (9) (re-
stricted to our 2&2 block) is a traceless, Hermitean ma-
trix, but is otherwise arbitrary, depending on details of
the Hamiltonian. One also sees from (8) that f is trace-
less and Hermitean within the block.

We can define a gauge transformation as an R-
dependent unitary transformation U(R) applied to the
states !a) and ! b);

I. (R)) =U(R) I~(R)&

=g, IP(R) &&P I U(R) I ~&, (11)

!
There is a I'reedom of choice of f(R) corresponding to
the freedom of choice in defining degenerate states, but
the definitions clearly require that

with a, p taking on the values a and b If (.10) is still to
be satisfied by the primed kets, U(R) must belong to the
special unitary group SU(2) of unitary operators with
unit determinant. The effect of (11) on F is obtained by
the application of (8) to the primed kets,

f'=U'fv —Iv'vU, (12)

in agreement with the usual formula for a non-Abelian
gauge transfermation.

In Born-Oppenheimer approximation, we write a
molecular wave function belonging to the given energy
level in the form

In the effective Hamiltonian for the nuclear wave func-
tion y(R), therefore, the gradient operator V must be re-
placed by

&+i f(R),

in which each component of f is a matrix operating on
the two-component column vector y(R). The effective
Hamiltonian for the motion of the nuclei thus contains a
gauge-field term. This is the generalization of the ef-
fective vector potential (Abelian gauge field) found in
the nondegenerate case. ' ' The presence of such a
term is unavoidable if the electronic eigenkets are to be
single-valued functions of R, in which case (9) must be
satisfied.

It is evident that molecular systems with Kramers de-
generacy will furnish many examples of the role of non-
Abelian gauge fields and phase factors in chemical phys-
ics. The remainder of this Letter is devoted to a particu-
lar simple example which is expected to lead to easily ob-
servable eAects.

Consider an atom with an odd number of electrons, in
a level with total angular momentum quantum numberI= —,', —', ,

—', , . . . . The case I=
& will prove to be unin-

teresting, but is included for completeness. The P3/2
ground state of fluorine is an example. If the atom is
placed in a uniform electric field E, the degenerate level

e =g. ! a(R))y. (R).

Applying the nuclear gradient operator to this, with use
of (8), and ignoring any coupling to other energy levels,
we find
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is split by the Stark Hamiltonian

H=A(E J)' (»)
in which 2 is a constant. The components of E can here
be considered to be continuously variable parameters on
which H depends. The Hamiltonian (13) is split into
J+ 2 Kramers doublets, characterized by the quantum
number

~
M

~

——,', —,', . . . , J, denoting the absolute
value of the component of angular momentum along the
field, with energies given by

W(iMJ) =WE'[Mf' (i4)

Now let E be initially directed along the z axis, and
consider an infinitesimal rotation through an angle dp,
about an axis in the (y, z) plane making an angle 8 with
the field. The small change in H is given by

dH=AF. sinO(J, J, +J„J,)dp. (is)

If the rotation is carried out adiabatically, the eigenfunc-
tions will follow it according to Eqs. (2)-(3), but with
the block-diagonal part f=0, so that G=g. With use of
(7), (14), (1S), and some elementary angular momen-
tum theory, one finds, for the matrix elements of g,

&M+1
~ i' M)

= —(M ~igq ~
M+1) =[(1+M+1)(J—M)l' sinO. (16)

—i (J, cosO+ J~ sinO) dp. (i 7)

This is easily seen to have the same oA-diagonal ele-
ments as ig&dp, but also has a block-diagonal part. The
eAect of the infinitesimal adiabatic rotation can thus be
pictured as a rotation of the eigenfunction following the
field according to (17), followed by subtraction of the
block-diagonal part. Relative to a coordinate system fol-
lowing the field, therefore, each doublet experiences the
infinitesimal transformation

Equation (16) holds for elements of g& linking states be-
longing to diA'erent doublets; if

~
M+ I

~

=
~
M ~, howev-

er, which occurs for the doublet with
~
M

~

= —,', the ma-
trix element of g& is zero.

The operator ig&dp, which generates the adiabatic
change in the eigenfunction under the rotation, is not the
same as the operator for a rotation of the eigenfunction
about the axis, the generator of which is

turn is simply "left behind. " For J) —, , however, this is
not possible: No purely block-diagonal operator like
(18) corresponds to a rotation.

There are two particularly simple cases in which (18)
can be integrated to yield the result of a finite rotation.

(a) Let 8 = rrj2, so that one is rotating about the y axis
itself. Integrating (18) and with use of (19), we find

U(y) =exp[ —,
' i (J+ —,

' ) aery]

=cosf —,
' (J+ —,

' )p]+icr~ sin[ —,
' (J+ —,

' )y]. (20)

Equation (20) predicts a reversal of sign of angular
momentum component along the field with unit probabil-
ity at an angle

1+dU = 1+i (J, cos8+ J~d sinO) dp, (i8)

J, =
2 cr„Jyd =

2 (J+ —,
'

)cry (i9)

For J = —,', we note that (18) simply cancels out the
rotation (17), with the result that the angular momen-

where Jyd is the block-diagonal part of Jy.
For doublets with ~M ~

) —,', J~d=0, and (18) leads
to a phase factor, opposite in sign for the two com-
ponents of the doublet. This is of some interest, but does
not exhibit non-Abelian properties.

Of greater interest to us is the doublet with
~
M

~

= —,',
for which both terms of (18) contribute. It is convenient
to represent J, and Jyd within this block in terms of the
Pauli matrices. Elementary angular momentum theory
gives the result

etc.

The result for J= 2 just corresponds to the fact that in

this case the angular momentum stays put as the field is
rotated, with the result that it has reversed direction rel-
ative to the field when the field has been rotated through
an angle ~. The results for other J, however, although
easily derivable, are nontrivial and refIect the presence of
the non-Abelian gauge field.

(b) Let 8 be arbitrary, but rotate through an angle
&=2rr. In this case, integration of (18) with the aid of
(19) gives

U(8) =exp[irr[o, cosO+ (J+ —,
' )a~ sinO]] =cosq+i (rri'q) [cr, cosO+ (J+ —,

' ) cr~ sinO]sinq,

where

q = rr[cos 8+ (J+ —' ) sin 8] '

(2i)

(22)
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For J = z, we see from (22) that q =z, so that (21) just
predicts the usual sign change after a rotation through
2x, with no reversal of direction of angular momentum.
For other J, though, (21) and (22) predict a finite proba-
bility (never equal to unity) for a reversal of angular
momentum direction, given by

P =q [(J+ —,
' )xsin0sinq] . (23)

'Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

The angular momentum reversal probability given by
(23) is equal to zero for 8=0 or rr/2; in between, it has
J ——,

' maxima and J——', zeros.
The results predicted by (20) and (23) would appear

to make possible a relatively simple experimental obser-
vation of the non-Abelian phase factor analogous to that
already achieved for the Abelian case by observing the
rotation of polarization of photons passed through a heli-

cally wound optical fiber. '
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