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Intrinsic Optical Damage in KBr at 532 nm
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The nonlinear interaction of 532-nm, 100-psec laser pulses with KBr crystals is monitored up to dam-
age by measurement of the o. component of the self-trapped exciton luminescence versus photon flux.
The temperature rise in the interaction volume is obtained from the relation between o. luminescence and
flux with use of the known temperature dependence of the luminous efTiciency. The mechanism of ener-
gy deposition is four-photon free-carrier generation and free-carrier heating with other small contribu-
tions. Damage occurs at a temperature very close to the melting point.

PACS numbers: 61.80.Ba, 42.70.Fh, 71.38.+i, 78.55.Fv

Evidence is mounting that the interaction of intrinsic
wide-gap optical solids with intense photon fields in the
visible region is not necessarily governed —as hitherto
widely believed' —by electron-avalanche impact ioniza-
tion. Earlier theoretical work by Epifanov, Manenkov,
and Prokhorov predicted that avalanche is less effective
when the photon energy, @co, is greater than Eg/4 (Eg is
the band gap) and more eflective when &to is less than
Eg/5 Measurement. s by Manenkov of the temperature
dependence of laser-induced damage thresholds first in-
dicated basic discrepancies with the electron-avalanche
theory in NaC1, KC1, and KBr exposed to 8-nsec pulses
at 532 nm. Recently, Jones et al. presented proof that
significant amounts of energy can be deposited into NaC1
from an intense 80-psec pulse at the same wavelength via
four-photon absorption, and the temperature rise at the
focal point can be as high as several hundred degrees.
However, prior to the results reported below, experimen-
tal difhculties prevented a clear observation of intrinsic
damage for the case where free-carrier generation is
shown to be a high-order multiphoton process.

We exploit the temperature dependence of self-
trapped exciton luminescence to determine the tempera-
ture rise in the interaction volume during the exposure of
a reactive atmosphere-processed (to reduce OH con-
tamination) ultrapure single crystal of KBr to intense
532-nm laser pulses. In these experiments the cr-lumin-
escence band of self-trapped excitons (the self-trapped
hole —or V~ center —plus captured electron resulting
from interband excitation) is measured with a calibrated
optical detection system as a function of peak photon
flux of the 100-ps (half-width at 1/e intensity) pulse.
The resulting spatially and temporally integrated a-
luminescence signal, L ', monitored with an optical
multichannel analyzer, is plotted, initially in arbitrary
units, as a function of laser peak flux F (Fig. 1). The
laser-beam parameters are carefully measured (see Ref.
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FIG. 1. Calculated (solid and dashed lines) and measured
(triangle) spatially and temporally integrated emission from
KBr as a function of the peak photon flux in 532-nm laser
pulses of 100-psec duration (1/e intensity half-width). The
solid line is obtained with use of the free-electron heating mod-
el, while the dashed line is based on the polaron heating model.
This luminescence is induced by four-photon exciton genera-
tion with subsequent radiative recombination of electrons and
Vk centers.

5) in order to determine precisely the flux distribution in
the interaction volume. The results show that, below
F =2.2x10 photons/cm sec, the slope of the I (' vs F
curve is nearly 4 on a log-log scale and the interaction of
the photon field with the material does not result in a
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discernible temperature increase. In this flux region the
four-photon absorption cross section was found to be
cr = 2 x 10 ' ' cm sec (Ref. 5). The increase of the
photon flux causes the local temperature, T, to rise, and
the slope of the curve decreases according to the o-
luminescence efficiency, il(T):

q(T) = [1+2exp( —E,/kT)]

Here 8 =3.8&10 and E, =0.124 eV.
Analysis of the measured data presented in Fig. 1

shows that the temperature rise at the center of the in-
teraction volume can be as high as 868' (from the initial
value of 50 K to 918 K at the highest flux, F =6.3 x 10
photons/cm sec. Even at this Aux, no catastrophic dam-
age of the material can be detected. This is remarkable
for four reasons:

(a) Electron-avalanche formation does not contribute
significantly to energy deposition up to this point, since a
considerable avalanche should lead to damage (discussed
below).

(b) The dependence of the a-luminescence yield on
photon flux in Fig. 1, which can be explained by the mi-
croscopic processes in KBr exposed to 532-nm laser
pulses, reveals the intrinsic nature of the higher-order
nonlinear photon-material interaction and laser-induced
damage for this case.

(c) The heat mechanism required to explain the
dependence at higher fluxes is the free-electron heating
proposed by Epifanov and not polaron heating.

(d) The highest temperature reached, which is only 90
K below the melting point at normal pressure, demon-
strates for the first time that melting is indeed directly
indicated as the failure mode at least for the small
eAective interaction volumina used in our experiments
(typically 5x 10 cm ).

The calculations of the fl.ux dependence of the total
luminescence emission are based on the known four-
photon absorption cross section, photon collection effi-
ciency of the detection system, and the rate equations for
the interaction of the photon field with the material. -'

Now, however, the temperature dependence of the o.-

lurninescence efficiency and the heating rates cannot be
neglected. They are crucial for analysis of the measure-
ments. The spatial distributions of time-integrated lumi-
nescence emission and temperature must be calculated
for each pulse. To achieve this, the mechanism of lattice
heating must be known. As we have shown before in
NaCl exposed to intense 80-psec pulses at 532 nm, pola-
ron or the free-electron heating proposed by Epifanov
may occur with small contributions from absorption by
laser-generated primary defects. Yet, prior to the pres-
ent work it has not been possible to experimentally prove
in any wide-gap optical material which of the two mech-
anisms actually prevails at visible wavelengths. It turns
out that the o-luminescence yield dependence on in-
cident Aux permits discrimination between the two possi-

ble heating processes. In the calculation, polaron heat-
ing (see Ref. 4) is given by a temperature-dependent ab-
sorption cross section, '

cr = (4rre ~/«imrop) (2a/3)

x (rop/ro) 'i'[1+ [2/exp(h cop/k T) —
1 jI. (2)

According to Epifanov, '' free-electron heating can be
expressed as

c(dT/dr ) =1.09(mkT/2~) 'i~(n, /I„.v, )

x(eE/m )3.

The symbols in Eqs. (2) and (3) are Cop =3.13 x 10''
sec ' (optical-phonon frequency), m =0.388m, (band
mass), a =3.16 (polaron coupling constant), co the laser
frequency, n the refractive index, c~ the speed of light, T
the lattice temperature, c(T) the Debye specific heat
calculated with a Debye temperature of 173 K,
=3.0x 10 cm (mean free path of conduction elec-
trons), v, = 3.15 && 10 cm/sec (sound velocity), n, the
conduction-electron density, E the peak electric-field
strength, e the electron charge, and k the Boltzmann
constant.

We do not consider beam deformation caused by self-
focusing or defocusing, or free-carrier and thermal
diffusion. Recent investigations of beam deformation in

alkali halides ' show that for a tightly focused laser
beam (less than 10 pm in radius) it is a much smaller
eAect than previously believed' at photon fluxes up to
the damage threshold. This is confirmed by our observa-
tion of an undisturbed far-field beam pattern emerging
from the sample, In addition, the calculations show that
the free-carrier density is only 1.9 x 10 ' cm at the
highest flux used in these experiments. This is consider-
ably less than that required to cause a significant de-
crease in the refractive index. Simple calculations ''
show that free carrier and thermal diirusion are negligi-
ble for a laser pulse of 100 psec.

The calculations described above provide the tempera-
ture distribution immediately after the laser pulse has
passed through the interaction volume as well as the
time-integrated luminescence intensity distribution as a
function of laser peak flux for the two mechanisms of
charger-carrier energy absorption. Examples of temper-
ature and luminescence intensity distributions are shown
in Fig. 2. The temperature distribution is approximately
the same as the fourth power of the energy density of a
Gaussian beam (because the absorbed energy is approxi-
mately proportional to the incident intensity to the
fourth power) and the luminescence distribution is that
of the free-carrier density modulated by thermal quench-
ing according to Eq. (I ).

Comparison with the measured spatially integrated
luminescence yields, L ', sho~s that only free-electron
heating (with up to 15% contribution by Vi, -center ab-
sorption '' to the total energy deposited in a single
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