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Self-Organization of Electrostatic Turbulence in a Cylindrical Plasma
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On the basis of theory and computer simulations we show that electrostatic turbulence in a cylindrical
plasma with magnetic shear and curvature self-organizes to form a macroscopic potential p which de-
pends only on the radial coordinate r and is given by p(r) =Jo(pr)+C|r'+Cz, where C~ and C2 are
functions of a constant p. A unique feature of the potential is the existence of a coaxial p(ro) =0 surface
at r0=0.7a, where a is the radius of the cylinder. This surface is found to be fairly rigid and is con-
sidered to inhibit radial particle transport.

PACS numbers: 52.35.Ra, 52.35.Py, 52.55.Pi, 52.65.+z

In the presence of appropriate constraints, plasma tur-
bulence is known to self-organize to form semicoherent
macroscopic structures' which play crucial roles in the
equilibria and transports. In this Letter we present the
first evidence of self-organization of electrostatic tur-
bulence in a cylindrical plasma based on three-
dirnensional simulations and a theory. The plasma tur-
bulence is excited by a combination of the resistive
drift-wave instability and the resistive interchange insta-
bility in the presence of an axisymmetric magnetic field
with a curvature and shear. The conservation of poten-

tial enstrophy induces condensation of the turbulence en-
ergy into the zero axial and zero azimuthal eigenmode to
form an axisymmetric potential surface p(r). The con-
servation of angular momentum uniquely determines the
structure of the potential p(r) in the form

y(r) =(I 4lp )Jo(pr)I—Jo(p) r+4/p, —

where p =3.82, r is normalized to unity at the radius of
the cylinder, and Jp is the Bessel function.

The model equations we use to describe the electro-
static turbulence are the equation of vorticity,

(p, /a )d(V~p)/dt =(V inn x VQ) z+ (tu„/v„)(a/R) V~~ (inn —p)+ (p/cu„a )V~/,

and the equation of continuity,

d inn/dt =(Vlnn x VA) z+ (cu„/v„)(a/R) V~~ (Inn —p). (2)

Here the parallel current J!!is eliminated by the use of a
generalized Ohm's law with the assumed isothermal elec-
tron pressure gradient. The contribution of the ion
parallel current is ignored. p (=e&IT, ) is the normal-
ized electrostatic potential, n is the plasma number den-
sity, a is the radius of the cylinder, m„ is the electron cy-
clotron frequency, v„ is the electron-ion collision rate,
and p, [= (T,/m; ) 't /tu„] is the ion Larmor radius at
the electron temperature. In the derivation of Eq. (I)
from the ion equation of motion, the gradient of mass
density is ignored with respect to the gradient of p. The
perpendicular coordinate is normalized to the cylinder
radius a, the parallel coordinate is normalized to the ma-
jor radius R, and the time is normalized by (co„p,/
a ) '. The convective derivative is given by

V~~
= t)/t)z + (V gyp x z ) ' V. (5)

pr
yo =J~ rt(r) dr

and

pr
~ =(a2/R2)(1V/l) [r 2t(r)+2& rt(r) drl, (7)

The curvature term 0 and the flux function yp may be
represented by the rotational transform t(r) for a helio-
tron configuration,

d/dt =rllrlt+vp V,

VE = —Pyxz, (4)
where I is the pole number and N is the pitch number.
By subtracting Eq. (2) from (1), one can construct the
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equation for the potential vorticity g, (a) T IME =5.0 (b) T IME=5. 0

dg/dt = (p/ro„a')V' y, (8)

where

g=(p,'/a )V'p —inn.

The potential enstrophy conservation results immediately
from Eq. (8):

a & +V v, ~ = ",gV4y,
Bt 2 2 to a

(lo)

where U =f(g /2)dV is the potential enstrophy. The en-
ergy conservation is obtained by the multiplication of Eq.
(1) by p and (2) by inn, and subtraction of the result,

FIG. l. (a) The density contour and (b) the potential con-
tour from the three-dimensional computer simulation of elec-
trostatic plasma turbulence in a cylindrical plasma with mag-
netic curvature and shear. In (b) the solid (dashed) lines are
for the positive (negative) potential contours. Note the devel-
opment of closed potential contours near the &=0 surface.
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+ [Vii[(inn —p)Vt(inn —p)] —[Vt(inn —p)] }—P(p/co„a )V&P,
~ei

where

E=) —,
' [(inn) +(p, /a )(V p) ]dV

is the turbulent energy and the term on the order of
V vE ( =V& VA x z) is ignored. We note that under the
assumption of a negligible V vE, which is needed to con-
struct the conservation laws, the curvature terms does
not contribute either to the energy or to the enstrophy in

spite of the fact that it contributes to the linear growth.
Linear instabilities which are obtained from Eqs. (1)

and (2) are the resistive drift-wave instability, which is

not localized at the mode rational surface as a conse-
quence of the neglect of the parallel ion inertia, and the
resistive interchange instability, which is localized at the
mode rational surface.

The computer simulation to study the nonlinear evolu-
tion of the instability was performed by expanding the
potential p(r, t) and the perturbed density n(r, t) into the
Fourier modes in the azimuthal and axial directions,

„p~ „exp[i(m8 nz/R)], —

n =g „n „exp[i(m8 —nz/R)].

For computational purposes n and the background densi-

ty no(r) are normalized to the peak density n~, and Vlnn
in Eqs. (1) and (2) is approximated by V[nn(r)/nest]
+Vn. The normalized density ne(r)/n~ is taken to be
no(r)/nest =0.9exp( —2r )+0.1, and the rotational

transform t(r) =0.51+0.39r . The radially increasing t

is chosen to simulate Stellarator-Heliotron fields. The
mode number is selected within i rn i & 20 and i n i & 10
which has rational surface between i =0.5 and 1.0. The
total mode number is 111 including m=0, n=O modes
and chosen such that 1(m/n(2. The radial coordi-
nate is represented by 100 meshes. The time step h, t is
selected to be =dr/ ,' c„where Ar —is the mesh size, and
advanced by a predictor-corrector method. The bound-
ary conditions are

y,„(0)=n,„(0)=v, „(o)
=y „(1)=n „(1)=V „(1)=O

for mao and n&0, and dion(0)/dr =dnoo/dr =0 as
well as po o(I ) =no o(1) =0, where V(=V~&) is the vor-
ticity. Other parameters used in the computations
are p, /a =,'0, a/R = —,', , v„/ro« =1/7.5x103, p/ro„a2
=5x 10, and the diffusion coefficient D~/(ro„a) in-
troduced in Eq. (2) in order to saturate the instability is
5x10 . The initially small perturbation is given to
m=2, n=1 and m=3, n=2 modes. Figures 1(a) and
1(b) show the perturbed density and potential contours
at the saturation of the instability. The most conspicu-
ous feature of the potential contours is the formation of
the closed potential surface with p(r)=0. This is a
consequence of the generation of m=O, n=0 potential
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(which is an exact solution of the original set of equa-
tions) through the inverse cascade of the turbulent spec-
tra. We note that the parity conservation in the conven-
tional reduced MHD equations does not allow the gen-
eration of a

happ(r)

mode as found here. We also note
that the pp p mode does not produce mode coupling back
to produce m&0, n~0 and thus constitutes a condensed
state. An additional characteristic feature of the poten-
tial pp p is that it has a zero-potential surface within the
plasma at r =0.7. The dashed and dash-dotted lines in

Fig. 2 show the radial profile of pop(r) at two different
time steps. We have run diferent parameter regimes
with or without the curvature or fixed radial density
profile; however, the conspicuous feature of the genera-
tion of Pp p(r) which has a zero surface at r=0.7 re-
mained unchanged. Hence, we conclude that these
features are a characteristic of the electrostatic tur-
bulence in a cylindrical plasma which is pretty much in-

dependent of the detailed instability processes.
Let us now discuss the processes through which the

coherent potential structure is formed. On the basis of
the conservation of energy and enstrophy, the quasi two-
dimensional electrostatic turbulence has been expected to
form a self-organized state in the form of a large-scale
flow or a coherent potential profile. As usual we estab-
lish an appropriate variational principle to derive the
self-organized structure. The existence of the p(r) =0
surface inside the plasma, as well as at the wall, means
the existence of counter rotation of the plasma (a shear
flow); hence, we introduce a constraint that the quantity
M—:f (gr /2) d V is conserved which can be derived
straightforwardly from Eq. (8). The quantity M is

equivalent to the angular momentum when an appropri-
ate boundary condition is satisfied. As the variational
form, we seek a solution which minimizes the total po-
tential enstrophy U by keeping the total energy E and
angular momentum M constant,
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If we take variations with respect to n and tt, Eq. (12)
reduces to the following set of coupled equations:

() 1
—I)|,—Xl(p, /a )V~&+) 2r /2=0,

V~ /+X|V~& —2X2 =0.
(13)

(i 4)

FIG. 2. Profiles of p(r) for m =0, n =0 mode at two
difTerent time steps (dashed and dash-dotted lines) as com-
pared with the predicted profile (solid line) based on the self-
organization conjecture. The predicted curve is fitted at
r/a =0.5.

6U —ki 6E —X26M =0. (i 2) The boundary conditions which are consistent with the
simulations are p(1) =g(1) =0. The solution of Eqs.
(13) and (14) is readily obtained to give

~2 a2 1 1 4 2 4
I — Jp(pr) —r +

)"i s.' 2I ' (is)

anQ

J1(p)
2p Jp(p)

' 2
4 3

p, 2p

4

P
=0, (i 7)

12

and its smallest value is given by 3.82, which is close to
the first zero of Jl(p). The potential profile given by Eq.
(15) is shown by the solid curve in Fig. 2. To compare

Here the eigenvalue p, which is related to ki through

p =(a /p, )(Xi —1), is decided from the requirement
M=O,

with the simulation result, the theoretical profile ob-
tained from Eq. (15) is fitted at r =0.5 Agreement with
respect to the point of zero crossing and to the general
profile is seen. The disagreement at r =0 and r=1 may
be due to the fact that the turbulent energy in these re-
gions is relatively low and, hence, it may take a longer
period of time to reach the self-organized state. We also
note that for any function f(r), ff(r) g dV is conserved;
thus the choice off=r /2 is not mathematically unique.

A self-organization is often produced by condensation
of the turbulent spectrum into the longest wavelength.
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Consequently the potential profile obtained in Eq. (15)
resembles the axial magnetic field of the Taylor's solu-
tion for the reverse-field pinch. Taylor obtained the
solution by minimizing the (magnetic) energy with the
constraint of a constant helicity, while here the solution
is obtained by minimization of the enstrophy rather than
the energy, because enstrophy can be shown to dissipate
more quickly than the energy for electrostatic tur-
bulence.

In summary we have shown a self-organization of elec-
trostatic turbulence of a cylindrical plasma with magnet-
ic curvature and shear. The resultant axisymmetric po-
tential profile is explained by means of the variational
principle of minimization of the potential enstrophy.
The self-organized axisymmetric potential contours show
generation of azimuthal zonal flows; hence, they indicate
inhibition of radial diflusion. In particular, near the
&=0 surface, the radial particle flux is minimum since
(pni) =0. This fact in turn produces a steep density gra-
dient around this surface. The diflusion is likely to occur
intermittently when a small cell moves across the closed
stream lines.
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