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Initial Stages of Pattern Formation in Rayleigh-Benard Convection
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Flow-visualization studies and heat-Aux measurements during the early evolution of convection in a
cylindrical container of aspect ratio 10 (radius/height) are reported. The heat current was ramped
linearly, or modulated time periodically, from below to above the onset value. A novel sidewall design
allowed pattern formation to occur independently of container geometry. In the earliest stages, the pat-
terns were composed of irregularly arranged cells and varied randomly between experimental runs. The
results demonstrate the importance of stochastic eA'ects during the pattern evolution.

PACS numbers: 47.20.Bp, 47.25.QV

Pattern formation in nonequilibrium systems has re-
ceived considerable attention recently. ' An important
question is whether these patterns emerge in a purely
deterministic manner or whether noise plays a central
role in their formation. An interesting example in

which stochastic eA'ects seem important is a recent study
of dendritic growth. Rayleigh-Benard convection in a
horizontal fluid layer subjected to a vertical temperature
gradient is particularly well adapted for the study of
such processes because the equations of motion are well
established, and the boundary conditions are simple and
can be controlled well. Indeed, fluctuations near the con-
vective threshold have received considerable theoretical
attention, but so far there has been no convincing exper-
imental evidence of their importance. Stability analysis
shows that the steady -state pattern near threshold
should consist of straight parallel rolls for the laterally
infinite system. Experimentally we find that the initial
state of pattern formation is usually dominated by tran-
sient horizontal thermal gradients associated with the
sidewalls, which result in patterns reflecting the sym-
metry of these lateral boundaries. We have eliminated
this forcing, enabling us to observe patterns which should
be representative of what would be seen in a laterally
infinite system. These patterns, when they ftrst emerge,
consist of randomly positioned cellular flow, which is ir-
reproducible from one experimental run to the next. The
irreproducibility implies that stochastic perturbations
play a crucial role in the initial stages of pattern forma-
tion when deterministic effects (such as horizontal gra-
dients) are reduced to suSciently low levels.

The working fluid was water at 25.5'C. We used two
types of sidewalls for a cylindrical container of inner di-
ameter 6.35 cm and height d =0 318 cm. The first
forced flows which reflected the sidewall geometry. It
consisted of a ring of high-density polyethylene of
thermal dift'usivity tc=2.2 x 10 cm /s, which differs
from that of water (1.47X10 cm /s). This mismatch
resulted in horizontal temperature differences between
the fluid and the wall, during the period while the verti-
cal temperature difference was being changed, which

were suf%cient to control the pattern evolution. The
second sidewall did not force any flows. It consisted of a
polyethylene ring similar to that described above, except
that it had an inner diameter of 7.6 cm, and the region
between its inner surface and the fluid was occupied by
an annulus of 5% polyacrylamide gel which has thermal
properties very close to those of water. The remainder of
the apparatus was as described previously.

A first experiment involved ramping the heat current j
linearly through the convective threshold, with dimen-
sionless ramp rate p such that j =jo+pt. We measured

j in units of the critical current for the onset of convec-
tion with steady heating and t in units of the vertical
thermal dift'usion time t,, =d /tc. Our ramp rates were in

the range 0.01 ~ P ~ 0.30. All values of P gave qualita-
tively similar results. After an initial transient, the tem-
perature diflerence AT increased linearly with time until
convection began. We defined t =0 to be the point
where AT=8, T„and jo to be the current at l =0. The
convective heat current j""' was determined as de-
scribed elsewhere.

As in Ref. 3, one attempt to distinguish between sto-
chastic and deterministic eAects consisted of comparing
the data for j"""with the predictions of a Landau am-
plitude equation

roA =eh —gA +kA +f
Here e(t)—:BT(t)/AT, —1, g and k are constants found
from independent static heat-flux measurements, zo is
obtained from a linear stability analysis, and j"""=4 .
First, a constant phenomenological field f was used as
the only adjustable parameter in the model. Equation
(1) was integrated with initial conditions e= —P and
4 =f/P, and f was least-squares adjusted to fit the data.
Next, we also compared j"""with the predictions of a
stochastic equation, where the field f of Eq. (1) was
taken as a Gaussian noise term with (f(t)f(t'))
=2roFS(t —t'). The approximate solution of Eq. (1)

given in Ref. 3 was fitted to the data by adjusting F.
The first two figures illustrate the difference between

forcing and nonforcing sidewalls. The time-dependent
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FIG. 1. Shadowgraph images of the emerging pattern and
data for the convective heat flux j""',as a function of time, re-

sulting from a linear heat current ramp, with a dimensionless

ramp rate P =0.27, for a cell with polyethylene sidewalls.
Time is given in units of the vertical thermal diff'usion time,
and j"""is in units of the heat flux at the onset of convection
for steady heating. Solid circles correspond to the points where

images were taken.

convective heat current is shown below the images, with
solid circles corresponding to the times at which the im-

ages were taken. Figure 1 shows the results for the forc-
ing sidewalls. The pattern clearly rejects the geometry
of the walls, and the images illustrate how this pattern
spreads. It develops in the region adjacent to the wall
and moves inward filling the cell. The solid curve in the
plot is given by the deterministic equation with

f=2.70X10, and the dashed curve is the solution to
the stochastic equation with F =2.74 x 10 . Both

FIG. 2. Images and convective-heat-flux data as in Fig. 1

for the same ramp rate, but for a cell with sidewalls made of
5% polyacrylamide gel.

theoretical curves are in good agreement with the data,
and this comparison thus cannot distinguish between a
deterministic and a stochastic forcing field.

The results obtained with the nonforcing sidewalls are
shown in Fig. 2. In this case the pattern was not
influenced by the walls. It emerged at the same time
throughout the cell, and its form was not correlated with
the container geometry. Interestingly, the pattern is not
composed of rolls, but rather of irregularly arranged
cells with no clear geometrical structure. Similar pat-
terns were also obtained in a cell with square sidewalls.
The best-fit field values were f= 1.28 x 10 and
F =6.03 x 10, for the circular cell. The smaller values
for the fields compared to the case illustrated in Fig. 1
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FIG. 3. Emerging patterns for consecutive experimental
runs, all with ramp rate P =0.27, for the cell with gel sidewalls.
The images were taken at the time corresponding to point d in

Fig. 2, and clearly show that the emerging pattern is not repro-

duciblee.

demonstrate the weaker forcing of the gel walls relative
to the plastic walls. Although the stochastic equation
provides a slightly better fit in this case, the data forj""'cannot distinguish convincingly between the deter-
ministic and the stochastic field. However, one might
hope that a detailed theory of the stochastic forcing,
when it becomes available, will yield a value for F to be
compared with the measurement.

The patterns emerging from thermal ramps with the
polyethylene walls were always reproducible. Those aris-
ing from ramps with the gel walls were qualitatively
similar, but diNered in successive runs. This is illustrat-
ed in Fig. 3, which shows images (at the time corre-
sponding to point d in Fig. 2) for four consecutive runs,
all with P =0.27. The cells of the flow were located in

different places each time, causing no two patterns to be
the same. This pattern irreproducibility implies that the
cellular pattern was induced by a stochastic perturba-
tion.

The cellular patterns which formed during the ramps
healed into a roll-like pattern within a few thermal
diffusion times. This evolution is illustrated in Fig. 4,
where we show later images of the ramp of Fig. 2.

In a second set of experiments, we observed random
cellular flow involving pattern decay and reformation as
a stationary process. ' Here the heat current j was
modulated sinusoidally, resulting in e(t) =eo+Bsin(Qt)

l.2—
~ COnv

0.8—

p4— 0 ~
0

0

I

2
I I

3 4
TiME (t, )

I

5

FIG. 4. Evolution of the pattern of Fig. 2, under continued
ramping, showing healing leading to a roll-like structure.
Heat-flux data are also shown, with point a corresponding to
point d of Fig. 2.

+(higher harmonics). When eo was sufficiently large,
an initially induced roll pattern persisted, periodically
fading away and then reappearing unchanged. For lower
eo, however, the amplitude of the convection decreased to
a small enough value so that perturbation s could
influence the pattern, and the reemerging structure, after
many cycles, consisted of random cells, qualitatively the
same as those shown in Fig. 2. Figure 5 shows as solid
circles the experimentally determined boundary in the
eo-6 plane below which cellular flow was seen for 0 =1.
The solid curve was obtained by postulating that the roll
pattern would disintegrate and cellular flow would
emerge if the minimum ofj """(t)during one cycle fell
below a critical value taken to be 1.25x10 . '' It is in-
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FIG. 5. Data for the boundary above which the reemerging
pattern in successive cycles of modulation was reproducible
and roll-like, and below which it was cellular. The solid curve
was obtained by assuming pattern reproducibility for
j""'(r) ) 1.25 x 10 throughout each cycle. The dashed
curve shows the convective threshold shift predicted from a
Lorenz model (Ref. 11).

teresting to note that such a small value of j""'would be
reached under steady driving only for a=10, and that
fluctuations are predicted to play an important role for
such a small value of e.

The dashed curve in Fig. 5 shows the convective
threshold shift e, (A, 6) predicted by a Lorenz model, ''
which assumes that a roll pattern may remain intact
down to arbitrarily low values of j""".Clearly this mod-
el is not applicable for the parameters of Fig. 5 where
noise plays a dominant role in inducing convection. At
higher modulation frequencies, where j""'does not have
time to decay below 10, the cellular flow should not
occur, and the predictions for t., of the Lorenz model
should be observable.

We would like to stress that the cellular structures
seen in our modulation experiments are not the hexagons
that have been predicted' to be stable for certain modu-
lation parameters. The irreproducibility and irregularity
of the patterns should make this conclusive.
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