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Unsteady fast-dynamo action is obtained in a family of stretch-fold-shear maps applied to a spatially
periodic magnetic field in three dimensions. Exponential growth of a mean field in the limit of vanishing
diffusivity is demonstrated by a numerical method which alternates instantaneous deformations with
molecular diffusion over a finite time interval. Analysis indicates that the dynamo is a coherent feature
of the large scales, essentially independent of the cascade of structure to small scales.

PACS numbers: 47.65.+a, 05.45.+b, 47.20.Tg

A current focus of kinematic dynamo theory is the
search for fast dynamos, capable of generating exponen-
tially growing magnetic fields in fluids of arbitrarily high
electrical conductivity.'*? Although the qualitative argu-
ments in favor of such dynamos are compelling, their ex-
plicit construction has proved elusive because of the com-
plicated field geometry created in a highly conducting
fluid by even the simplest movements. The difficulty is
that most flows create regions of large field variation, so
that magnetic field diffusion occurs on structures of
ever-decreasing scale as the diffusivity tends to zero.?

The magnetic field in a highly conducting fluid be-
haves essentially like an ensemble of differential material
line elements moving with the fluid. Spatially chaotic
flows, in which material line elements stretch exponen-
tially rapidly, are therefore natural candidates in which
to seek fast dynamos. Special constructions on curved
Riemannian manifolds indicate that continued field
stretching can lead to a fast dynamo, and direct numeri-
cal simulations of field evolution in the chaotic ABC
flows support this picture.*> Strauss® has identified a
complementary mechanism for fast-dynamo action in
chaotic flows, utilizing an effective turbulent resistivity.

The role of chaotic flow with positive Liapunov ex-
ponent has been emphasized in fast-dynamo construc-
tions '>"'® but line stretching per se is not sufficient for a
fast dynamo. Even with exponential stretching, regions
of oppositely oriented field can be squeezed together,
with the resulting cancellation dissipating the field faster
than it is being amplified. The SFS dynamo, described
below, exhibits this effect for small values of the parame-
ter a. A necessary condition for fast-dynamo action is
that such destructive interference be minimized.

Recently, Soward® has found an example of fast-
dynamo action by a steady, quasi two-dimensional veloc-
ity field, in which destructive interference effects are pur-
posely minimized by the model. Although the flow is
steady, the physical argument invokes an unsteady anal-
ogy. Conceptually, the field is first stretched by a two-
dimensional flow— which also folds the field so that re-
gions of opposite orientation are brought into proximity.
The field is then sheared in the third direction, which

(provided the field variation in this direction is chosen
appropriately) rearranges the field so that the interfer-
ence is predominantly constructive. We refer to this
kind of process as the stretch-fold-shear (SFS) mecha-
nism. In Soward’s examples, it operates in thin magnetic
diffusive layers at the cell boundaries of a periodic array
of helical vortices.

Soward’s work suggests the investigation of the SFS
mechanism for simple, explicitly unsteady flows and
maps in R3. In the present note, we study the effect of a
prescribed motion u(r,z) on a magnetic field B(r,7),
which evolves according to'!

8,B=Vx (uxB)+1V’B, V-B=0, ¢))

where n is the magnetic diffusivity of the fluid. Our re-
sults indicate the existence of a large class of kinematic
fast dynamos in which the motion consists of extremely
rapid deformation followed by periods of rest during
which (weak) diffusion acts. This separation allows the
advective and diffusive processes to be treated separately,
greatly simplifying the mathematical analysis. '*!!

This paper examines two particular types of rapid
motion. The first is a stretch in the x direction, a fold in
y, and finally a shear in the z direction; this will be called
the SFS model as its purpose is to exemplify the SFS
mechanism in the least complicated way possible. This
motion is discontinuous at the fold and therefore unreal-
istic, but has the advantage that it has extremely simple
behavior. The second motion consists of rapid advection
by a smooth velocity field, followed by a rotation of coor-
dinates; this will be termed the pulsed-flow model.
While such jerky motions are somewhat artificial, our
models display the full range of behavior expected to
occur in general three-dimensional dynamos. The theory
does not require the machinery of multiscale boundary-
layer theory, nor the existence of an effective chaotic
diffusivity. The ease and transparency of the present
constructions suggest that some dynamo action is a com-
mon feature of unsteady three-dimensional flows of elec-
trically conducting fluids.

We consider a cube of side L described by the rescaled
(dimensionless) coordinates 0 < x,y,z <1 in R3. The
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SFS map takes (x,y,x) to (x',p',z"), where

x'=2x, y'=yp/2 forx=< %,
(2a)
x'=2—2x, y'=1—yp/2 forx> %

is a Baker’s transformation that performs the stretch-
fold operation in the x,y plane, and

z'=z+a(y'— +)(modl) (2b)

supplies the shear, where a is a nonnegative real number
specifying the amount of shear. One application of this
map constitutes the phase of rapid motion referred to
previously. The effect of this map on the unit cube is
shown in Fig. 1. For the purposes of our calculations, we
assume that this map is repeated periodically in space, so
that the field can be represented as a Fourier series.

We now regard the map as an instantaneous deforma-
tion of an electrically conducting material. The SFS
map is homogeneous in z, and has the property that the
set of material lines parallel to the x axis is mapped into
itself. We can therefore restrict attention to magnetic
fields of the form B(x,y,z)=e?"?b(y)X, for complex-
valued scalar functions b(y), as this form is preserved
under the map for arbitrary shear a.

Since the map is instantaneous, the material behaves
as one of infinite conductivity, and the magnetic field im-
mediately after the map is just the geometric deforma-
tion of the field immediately before. That is, B'(r’)

z

FIG. 1. Basic SFS map with B=[B,(y,z),0,0]. We illus-
trate the effect of one application of the map on the field
B=I[sgn(z — $),0,0]. Black indicates field in the positive x
direction, white in the negative x direction.
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=J(r)B(r), where r' is the image of r, and J is the Ja-
cobian (derivative) matrix of the map. In terms of the
function b(y ), we have

b'(y")=2sgn(+ —y")b(y), (3)

where y=min(2y',2—2y'). After the instantaneous
mapping, the material is held still for a time 7 while the
field diffuses within it. If

b)) =3 bjed i,
j=—
the effect of diffusion is to damp the jth coefficient by a
factor D(j)=expl—e(j2+1)]. Here, e=47%/R, and
R=L?%nT is the magnetic Reynolds number of the sys-
tem. Thus, if we include both the mapping and diffusive
effects, the field after m + 1 steps is given in terms of the
field after m steps by

bm+1D=D() 3 GG.k)b(m), @)
k=—o
where
i [ (=) —e™  (—1)—e ™
GOK = ek v jrat ok )

is the matrix that represents (3) on the Fourier coef-
ficients of b(y).

The representation (4) is well suited to numerical
study with a truncated vector of Fourier coefficients
(b-n,...,by). We simulated the field evolution by
performing a number M of iterations of (4), using the in-
itial condition bo=1, b;x0=0, and choosing M suffi-
ciently large that the coefficient vector essentially con-
verged to the dominant eigenvector (or space) of (4).
The quantity we used to measure dynamo action was the
instantaneous mean-field growth rate, here defined to be
Dinst (M) =In| bo(M)/bo(M —1)|. In practice, we found
that pine(M) had converged to a number pj, with an
accuracy of at least two and usually more significant
figures after M =40 iterations, for values of a greater
than 0.3 or so. By successively doubling N, we found
that N =64, 128, and 256 were sufficiently large to ob-
tain the same accuracy when ¢ took the values 0.01,
0.001, and 0.0001, respectively. In all cases, a rapid
diffusive decay of the spectrum occurs prior to the cutoff
at V.

For shear parameter a below 0.3 or so, the accuracy of
the calculations was sharply diminished. The reason for
the unreliability of the calculations at small a reflects the
complexity of the field dynamics. At small ¢, the spatial
field develops oscillations of amplitude 2™ on a length
scale 2 7™ after m iterations. The dominant eigenmode,
which is expected to be weakly decaying in time, there-
fore becomes very difficult to extract from the back-
ground noise. As we are primarily interested in the
growing modes at a = 0.4, we have not attempted to im-
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prove the low-a calculations.

In Fig. 2, we plot the dominant growth rate piny as a
function of a for ¢=0.01, 0.001, and 0.0001, respective-
ly. For a>0.4, and especially in the range 0.8 <a
< 1.2, pinst appears to approach a positive limit as ¢— 0,
strongly indicating fast-dynamo action. We can check
this statement in a number of ways; we illustrate using
the particular values 0.5 and 0.95 for a. When
€=0.0001, we have pi(0.5)=0.04 and p;n(0.95)
=0.2710 after forty steps. If we set é=0 in (4), we ob-
tain pin(0.5) =0.02 and pin(0.95) =0.2702 using an
N =256 truncation. Another check is to calculate the
field evolution exactly with the spatial equation (3).
After m iterations, the mean field is the sum of 2™ uni-
modular complex numbers with highly irregular phases,
and it is more meaningful to consider the average growth
rate pae(m)=m ~'In|bo(m)/bo(0)|. This sum is a
tedious computation even for moderate values of m, but
for m =17 we obtain average growth rates of 0.05854
and 0.2715 for a=0.5 and 0.95, respectively. Although
not rigorous, these checks support the claim that at
a=0.95 we are dealing with a fast dynamo. Fast-
dynamo action is also suggested for a=0.5, but the
small-scale fluctuations alluded to above prevent reliable
estimates at exactly zero diffusivity.

A clue to the reason why the dynamo growth rates are
so insensitive to the nature of the high-wave-number
cutoff can be found in the power spectra (not shown) of
the eigenmodes found as final states of the iteration pro-
cess. The spectra have very different diffusive tails, but
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FIG. 2. Growth-rate p vs shear a for various ¢, computed
from the /V-term Fourier truncation of Eq. (4). (A) ¢=0.01,
N =64, (B) ¢=0.001,N =128, and (C) ¢=0.0001,N =256.

their low-wave-number structures are almost identical.
This indicates that the large-scale structures determine
the mean-field growth, while diffusion sets the dissipation
length scale for the largely passive small-scale magnetic
structures.

Although the SFS map (2) is discontinuous on the
plane y = %, simple analytic flows act on the magnetic
field in a similar way. Consider the effect of a flow with
velocity field

ulx,y,z) =6 10, + Bsin2xx, + acos2xx), (6)

acting for a time &, followed by a change of coordinates
(x,y,z)— (y,x,z). In the limit §— 0 we obtain the
map

(x',y",z")=(+ % Bsin2nx,x,z+ + acos2zx).  (7)

For B near 1, the action of this map in the x,y plane
resembles the Baker transformation part of the SFS
map; that is, it essentially doubles the lengths of, and
roughly preserves the orientation of, lines aligned with
the x direction. The z component of (7) mimics the
shear part; note that a plays essentially the same role as
in the SFS map. The senses of the stretch-fold-shear
motions in this flow change sign between adjacent sub-
cubes of side +, so that the pulsed flow resembles the ac-
tion of an antisymmetric periodic extension of the SFS
map.

To maximize the similarity between the pulsed-flow
model and the most successful SFS dynamos, we choose
a=p=1 and use only these values in subsequent calcula-
tions. This choice makes (6) a Beltrami flow, i.e., a flow
in which the velocity and vorticity are everywhere paral-
lel. We remark that Beltrami flows have long played a
role in dynamo theories'%; indeed, the steady flow in
Soward’s calculations was a superposition of two Bel-
trami flows of the form (6).

The evolution of the magnetic field for one mapping-
diffusion time step is simply calculated, although we now
need to keep track of the two vector components

(By,B,) =e?™: Y
Jok=—eo

(Bxji,Byjx ) exp2mi(jx +ky).

The mapping of the Fourier coefficients is given by a ma-
trix equation resembling (4), except that the matrix ele-
ments now involve Bessel functions rather than the sim-
ple rational and trigonometric functions appearing in
(5). The field evolution is again simulated by restriction
of the indices j,k to the range — N, ..., N and iteration
of the matrix equation. Our preliminary numerical re-
sults suggest that the analogy with the SFS map is borne
out and the fast-dynamo activity is obtained for a and
equal to 1. For N =16 and 40-50 iterations, we obtain
instantaneous growth rates in the range 0.28-0.33 at
€=0.04 and 0.44-0.47 at ¢=0.004. With N =32, we
also find a growth rate in the range 0.44-0.48 at
€=0.0004.
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Since the stretching of line elements by a factor of ap-
proximately 2 is a common feature of both the SFS map
and the pulsed flow with g=1, these growth rates indi-
cate that the pulsed flow is the more efficient dynamo.
The reasons for this apparent efficiency are unclear, but
it seems likely that they are associated with the consider-
able inhomogeneity of the stretching and shearing ac-
tions in the flow when compared with the SFS map.

The dynamo growth rates in both the SFS and
pulsed-flow models are insensitive to ¢ as ¢— 0, despite
the fact that the corresponding eigenfunctions develop
more and more complicated spatial structure as e— 0.
Apparently, growth of the mean field is largely unaf-
fected by the cascade of magnetic energy to the small
scales where it is eventually dissipated. This is not
surprising on physical grounds, and can actually be
demonstrated for the SFS dynamo.

At exactly zero diffusivity, the energy of the magnetic
field quadruples with every iteration of the SFS map.
Mathematically, this implies that the matrix G/2
[defined by Eq. (5)] is an isometry on the vector space of
Fourier coefficients (... ,b—,bo,b1,...) equipped with
the energy norm. Now, the eigenvalues of isometries
necessarily have unit magnitude, as long as the corre-
sponding eigenvectors have finite norm. Since the dyna-
mo growth rates do not approach In(2) as e— 0, we sur-
mise that the corresponding limiting eigenvectors have
infinite energy norm. This behavior is exhibited in
simpler models also; consider, for example, the operator
H defined by Hf (k) =exp(— ek ?)f(k/2). For € exactly
zero, H/~2 is an isometry on the space of square-
integrable functions, while it is easily verified that for all
positive ¢, the only eigenvalues have modulus 1.

A more suitable norm in which to study the conver-
gence of eigenfunctions of the SFS dynamo is defined by

oo

1b)1?= X £G) b 12 (8)
where f(j=0)=1j| 77, f(0) =1, and y is a real number
between 1 and 2. It can be shown that the error incurred
by the N-term Fourier truncation of the full problem (4)
is less than CInN/N in the norm (8), where C is a num-
ber independent of N. This estimate holds uniformly as
e— 0, so that as far as this norm is concerned the limit
€— 0 can be studied by setting ¢=0 explicitly and
choosing N sufficiently large. Since the mean-field
growth rate is independent of the choice of norm, we can
expect the numerically observed growth rates to converge
as N — oo, regardless of the value of ¢.

The present paper has examined dynamo action in a
class of unsteady three-dimensional flow models. We
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have confirmed that chaotic flow with positive Liapunov
exponent is now sufficient by itself for a fast dynamo, but
in conjunction with a shear that rearranges regions of
opposite flux, chaotic line stretching can result in highly
robust fast-dynamo action. The magnetic fields arising
from flows with SFS behavior have exceedingly complex
structure, but both the numerical and analytical results
show that the dynamo is essentially determined by the
large scales, with the small scales just cascading passive-
ly to ever smaller scales.

Our model relies heavily on the splitting of the flow
into a brief interval of fast motion and a rest period of
diffusion. While highly idealized, this picture allows the
conceptual separation of the advective and diffusive
effects, and indeed is quite a reasonable model for flows
in which the characteristic diffusion time is large com-
pared to the time scale for deformation of the conducting
material. The use of this type of model by Parker!'® and
Backus'!' led to important advances in understanding
magnetic processes in conducting flows. We hope that
our models also will lead to better understanding of the
dynamo problem in highly conducting fluids.
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