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We present a high-precision experimental verification of the universality of f(a), the fractal dimension
of the subset of the attractor with scaling index a, at the transition from quasiperiodicity to chaos with
the golden-mean winding number. The experimental system is cooled extrinsic p-type Ge, which is volt-

age biased to produce a spatially dependent active oscillation.

PACS numbers: 05.45.+b, 72.20.Ht, 72.70.+m

Attractors for typical dynamical systems can be de-
scribed as the union of many interwoven fractal sets. '

Each set is characterized by an index a which describes
how the total probability contained in a small region sur-
rounding an element of the set scales with the size of the
region. The function f(a) is the fractal dimension of the
set with index a, and is expected to be universal for sys-
tems with other universal scaling properties; for example,
driven nonlinear oscillators at the transition from quasi-
periodicity to chaos with winding number equal to the
golden mean.

Universal predictions of circle-map theory for
structure in the Arnold tongue diagram and in the power
spectrum at the transition from quasiperiodicity to chaos
have been tested in experiments on several different
driven nonlinear oscillator systems. ' ' Agreement be-
tween theory and experiment was first obtained by Fein,
Heutmaker, and Gollub' for fluid convection. Subse-
quent work" ' by other groups has achieved excellent
quantitative agreement between circle-.map theory and
experiment. However, experimental confirmation of the
universality of f(a) has been sparse, in part because of
the noise sensitivity' of this quantity: A series of fluid-
convection experiments ' have provided the only pub-
lished confirmation of theory. In this Letter we present a
high-precision experimental confirmation of the univer-
sality of f(a) at the transition from quasiperiodicity to
chaos for a spatially dependent transport instability in
cooled p-type Ge.

The experimental details have been described previ-
ously in a test of the universal power spectrum. ' The
sample is a 4x8X8-mm crystal of p-type Ge with ac-
ceptor concentration a =- 1 x 10" cm, and has B-
ion-implanted p+ contacts which cover both parallel
8x8-mm faces. These contacts act as ideal reservoirs
for holes at 4 K and were able to supply &10 mA of
current without introducing excess noise. The Ge sample
was mounted in vacuum on a cold plate enclosed in two
concentric cooled radiation shields, and cooled to tem-
peratures T=-4 K. The sample was dc voltage biased
above the threshold by 5 V/cm for impact ionization of
shallow acceptor levels, where the dc I-V characteristic
has a region of voltage-controlled (N-type) negative
differential resistance. This type of I-V characteristic
can be generally shown to produce oscillatory spatial
structure in the form of planar electric field do-
mains. ' The time-dependent current oscillation pro-
duced by this instability in Ge has a very stable frequen-
cy, and a signal-to-noise ratio greater than the 80-dB dy-
namic range of the Hewlett-Packard model 3561A signal
analyzer used to record data.

In order to drive the sample to the transition from
quasiperiodicity to chaos, we superimposed sinusoidal
and dc voltages of amplitudes V„and V~„respectively,
with Vg, fixed at 3.05 V, where the spontaneous oscilla-
tion frequency has a minimum at fo =8020 Hz. The fre-
quency of the sinusoidal voltage bias was adjusted so
that the ratio of the response frequency to the drive fre-
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quency was within three parts in 10 of the golden mean

tTg =(5't —l)/2. The amplitude V„ for the transition
to chaos at og was determined experimentally as the am-
plitude V„=153mV which gave the best agreement be-
tween the measured current power spectrum S(f) and
the spectrum predicted by circle-map theory. ' This
was done by our computing and displaying the normal-
ized current power spectrum in real time as V„was ad-
justed to produce the maximum number of peaks with

characteristic self-similar structure between frequency
intervals diAering by factors of the golden mean. ' With
the drive frequency and amplitude adjusted to these
values, Poincare sections of the attractor were measured
as time series by recording of the sample current I(t)
once per drive cycle, at constant drive phase, using the
Hewlett-Packard model 3561A signal analyzer in

external-sample mode. We typically recorded five series
of 42960 contiguous current samples each onto the hard
disk of a microcomputer attached to the signal analyzer.

Figure 1 shows a Poincare section of the attractor at
the onset of chaos with winding number og, reconstruct-
ed from the current time series I(t) To cal.culate f(a)
for a set such as Fig. 1, one must choose a measure of
the distance between points on the Poincare section.
Two obvious choices are the Euclidean distance in the
embedding space, and the distance measured along the
Poincare section itself. For small length scales, these
distances are nearly identical, but for lengths approach-
ing the size of the attractor, the bends and curves in the
Poincare section cause them to diff'er. In order to max-
imize the range of length scales over which the scaling is

good, we measured distances along the Poincare section
itself. This was accomplished by use of a ridge-finding
algorithm to locate a high-probability path around the
Poincare section. A time series with one spatial coordi-

nate was constructed by moving each datum point in the
original section to the nearest point on the ridge, which
closely follows the Poincare section of Fig. 1. The dis-
tance between trajectory points is measured as the path
length s along the ridge, with the total distance around
the section normalized to 1. This measure of the dis-
tance was found to give the same correlation dimension
D~ as the Euclidean distance in two- and three-dimen-
sional embeddings, but yielded the best scaling of these
three techniques, as discussed below.

Figure 2 shows a histogram of the probability density
on the Poincare section of Fig. 1, measured along the
length of the section in units of s. As shown, the distri-
bution is highly singular, and is similar to the probability
density determined from the circle map at the onset of
chaos. Such a distribution can be decomposed into a
continuum of fractal sets, each with a scaling index a
which describes how the probability p, (L) contained
within a region of size L about a member of the set lo-
cated at s scales with L.. We determine this probability
directly from

p, (L) =N, (L)/Nt, t,

where N, (L) is the number of points from a long trajec-
tory of Nt„points which fall within a distance L of the
point at s. For small L, p, (L)~L', this relationship
defines the scaling index a. The elements of a set
with a particular value of a are distributed over the at-
tractor, and form a structure with fractal (Hausdorft')
dimension f(a). Small values of tt are associated with
parts of the attractor where the probability is very con-
centrated; for example, the sharply peaked regions of
Fig. 2. Large values of a correspond to regions of the at-
tractor that are rarely visited, such as the deep valleys in

Fig. 2. By calculating p, (L) directly from Eq. (l), using
long data sets, we avoided the recurrence-time approxi-
mation required by short data sets in previous experi-
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FIG. l. Experimental Poincare section reconstructed from
the current time series I(t) =ID+hi(t) at the transition from
quasiperiodicity to chaos with golden-mean winding number,
where ID=5 mA; n and T are the number and period of drive
cycles.
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FIG. 2. Histogram of the probability density on the Poin-
care section of Fig. 1, with the spatial coordinate s measured
along the section itself.
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mental work. ' For the smallest experimental length
scales, L =5 & 10, and the most sparsely visited regions
of the attractor, a trajectory of approximately 5x10
elements was required to achieve 10% accuracy in p, (L).

The spectrum f(a) can be found from a generating
function I (q, L ):

1.(q, L) =(p, (L)& '), (2)

r(q, L) ~L'&'. (3)

The quantities a and f(a) can be calculated from z(q)
by use of

a =dz(q)/dq,

f(a) =q dz/dq —z(q).

(4a)

(4b)

In practice, experimental noise introduces a lower
length-scale cutoff' to Eq. (3). Because compression in

the phase space onto the attractor is strong, and because
trajectories begin to diverge along the Poincare section
at the onset of chaos, small levels of experimental noise
are amplified along the Poincare section to produce ap-
proximately one-dimensional scaling in the range Ld(L (L ~, where Ld and L ~

are the noise-induced excur-
sions perpendicular and parallel to the section. Over this
range, p, (L)~L', with a= 1, and consequently the
noise-induced slope z„(q) =q —1, from Eqs. (2) and
(3). For length scales L (Ld, the probability p, (L)

where the average is over consecutive elements of a tra-
jectory on the attractor. The quantity q selects the value
of a which dominates the average in Eq. (2); for large
positive q, peaks in the probability distribution corre-
sponding to small values of a dominate I (q, L), and for
large negative q, valleys corresponding to large values of
a are heavily weighted. We calculated I (q, L) from our
data using Eq. (2) with 5000 values of p, (L).

For small length scales L, I (q, L) is found to scale
with L according to the power law

should grow as L, where d is the dimension of the
embedding. The range of experimental length scales
that gives universal scaling lies between L~, which varies
rapidly' with q, and L =1, the size of the attractor.

Figure 3 shows several examples of the log-log plots of
I (q, L) vs L used to determine z(q) and thereby f(a)
from experimental data. These illustrate both the meth-
od of analysis and the problems imposed by its sensitivity
to noise. As shown, I (q, L) is dominated by the effects
of noise for negative q and small L: The slope
z„=d log[I (q, L)]/d log(L) —=q

—1 for the smallest L is

just that predicted above for noise. For larger L a break
in slope occurs at L&, above which I (q, L) accurately
scales with L as z(q) predicted by the universal theory.
As illustrated in Fig. 3, the upper length-scale cutoff of
the universal scaling region moves to smaller L for large
positive and negative q, because more isolated regions of
the attractor dominate I (q, L) in either case. These con-
straints limit the range of q for which z(q) is easily eval-
uated to roughly —3 ~ q ~ 6. We found that the
recurrence-time estimate required for smaller data sets
with =4000 points produces rounded steps in I (q, L).
These steps make the noise scaling for small L unobserv-
able, and prevent an accurate determination of the
universal scaling region. These problems occur for
circle-map time series as well as for our experimental
data. Thus the limitations imposed on experimental
measurements of f(a) are severe: Both high signal-to-
noise levels and large data sets are required.

We measured z(q) and f(a) as described above from
three experimental data sets of =7&&10 data points
each, recorded at the critical amplitude V„=153 mV
with the experimental winding number adjusted to the
golden mean. The average of these experimental results
for f(a) is shown in Fig. 4 together with the universal

f(a) curve computed in the same way from the sine cir-
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FIG. 3. Log-log plots of I (q, L) vs L for several values of q,
as indicated. The dashed lines for negative q and small I. indi-
cate the predicted noise slope z, (q); the slope of the dashed
lines for intermediate L show the measured z(q).
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FIG. 4. The fractal dimension f(a) of the subset of the ex-
perimental attractor with scaling index a, shown with error
bars indicating the standard deviation of the mean of three
data sets. The universal circle map result is shown as a dotted
curve for comparison.
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cle map. The experimental error bars shown in Fig. 4
are simply the standard deviation of the mean of the
three data sets. As shown, the experimental results for
f(a) are in striking agreement with universal theory; this
comparison is made with no adjustable parameters. The
overall level of agreement shown in Fig. 4 is roughly a
factor of 4 better than obtained previously. This agree-
ment is physical evidence for the relevance of circle map
theory to our experimental system, which has both spa-
tial and temporal degrees of freedom, and which is in
principal infinite-dimensional.

The largest errors in our experiment are caused by
sensitivity to the ratio of the drive and response frequen-
cies and to the drive amplitude: A change in drive am-
plitude V„of 1% causes a noticeable narrowing of the
f(a) curve. ' In addition, the techniques used to ana-
lyze the data are sensitive to noise as discussed above.
The width of the universal scaling region for I (q, L) de-
creases fairly rapidly with increasing noise level and

~q ~, and for sufficiently large noise level or ~q ~, the
universal power law I (q, L) rrL'('t) will not be observed
at any length scale. This noise sensitivity presents dif-
ficulties in the use of f(a) to characterize the attractors
of typical experimental systems.
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2'In principle f(a) very rapidly narrows to a point below the

critical amplitude when determined on arbitrarily small length
scales, as discussed by A. Arneodo and M. Holschneider, Phys.
Rev. Lett. 5S, 2007 (1987). However, on larger length scales
which are experimentally accessible, the apparent f(a)
changes much less rapidly. For the sine circle map, the width
of f(a) determined by the algorithm used here (see Refs. 3-5)
narrows by 7% at an amplitude 1% below the critical line.
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