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Equivalence between y Instability and Rigid Triaxiality in Finite Boson Systems
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It is shown, by use of the O(6) limit of the interacting-boson model, that the y-unstable state can be
generated from the rigid triaxial intrinsic state with @=30 . This equivalence between the two descrip-
tions holds under a certain condition on the number of bosons, which is satisfied in realistic cases. The
P-y deformation potential calculated from this triaxial intrinsic state has a minimum also at y=30,
though quite shallow. The validity of the potential and the triaxial intrinsic state, which has been ques-
tioned because of the shallow minimum, is thus confirmed.

PACS numbers: 21.60.Ev, 21.60.Fw

The triaxial deformation has been one of the most in-
teresting and important subjects in the study of nuclear
structure, because it determines the shape of the nuclear
surface. Since a y-unstable model of Wilets and Jean, '

and a rigid-triaxial-rotor model of Davydov and Filip-
pov, the triaxial deformation has provided various ques-
tions, some of which are still open. One of the major
open questions is the relationship between physical pic-
tures contained in the above two models. The y-unstable
picture assumes that the wave function is distributed
over a wide range of y variable, which means that the
nucleus is soft with respect to the triaxial shape. On the
other hand, the wave function in the rigid-triaxial-rotor
picture has a sharp peak at a finite point of y variable,
indicating a stable or static triaxial deformation. The

two models are thus formulated on diAerent physical pic-
tures, although these models have been applied some-
times to the same nuclei.

We shall consider in this Letter the relationship be-
tween these two pictures from the viewpoint of the
interacting-boson model (IBM). The O(6) limit of the
IBM is known as a typical example of y-unstable sys-
tems. As shown by Ginocchio and Kirson, the O(6)
Hamiltonian can be equated with the y-unstable Bohr-
Mottelson Hamiltonian. This consequence has been ob-
tained in the intrinsic-state formalism. The IBM intrin-
sic wave function including the y degree of freedom is
defined generally as

IN, p, y&=(N ) '".[&,-'(p y)] Io),
! where N stands for the number of bosons, and

&, '(P, y) =(1+P') 'I'[st+Pcosydtt+ J—,
' Psiny(df+dt 2)],

with p and y being parameters. Ginocchio and Kirson have shown that the O(6) states of cr =N can be written as
p Ir/3

I [N], cr=N, r, vt„L,M) =
~ dysin3y) dA +L'~(y, A)R(Q) IN, p=1, y),

(2)

(3)

where L and M are the angular momentum and its z component, cr, r, v& are quantum numbers in the O(6) limit, @
denotes an amplitude, 0 means the Euler angle, and R(II) is the usual rotation operator. In the case of the ground
state, this turns out to be

f Ir/3

I [N], crN, r=0, v~=0, L =0) =& dysin3y„dQ, R(ft) IN, p= 1, y).
0

(4)

v(p, y) = &N, P, y I »t=o I N, P, y&

(N, P. y I Pr =o
I N, P. y&

(5)

The second integral simply works as the projection onto
0+. The first integral ranges over y=O-tr/3, indicating
the y-unstable nature of the O(6) limit. The O(6) limit
is thus considered to be an ideal example of the y-
unstable system. Meyer-Ter-Vehn has reported a similar
conclusion in terms of energies and B(E2) values.

On the other hand, the rigid-triaxial-rotor aspect of
the O(6) limit has been pointed out by Casten,
Aprahamian, and Warner, Castanos, Frank, and Van
Isacker, ' Dobes, '' and Elliott, Evans, and Van Isack-
er'2 from various viewpoints. Dobes calculated a p-y po-
tential, ' '

where Pl denotes the projection operator onto the angu-
lar momentum I, and H is an IBM Hamiltonian. For an
O(6) Hamiltonian, a minimum of V(P, y) is found not
only in the p direction, but also in the y direction at
@=30 . '' This minimum should be an indication of the
rigid triaxial deformation, if the minimum is deep
enough. There are thus two conflicting pictures, y unsta-
ble and rigid triaxial rotor, for the O(6) limit. We shall
resolve this problem.

The rigid triaxiality can be introduced to the IBM by
calculating physical quantities through the intrinsic state
(1) with a fixed y. We here take a Hamiltonian

H= tcg g, with Q =dts+std, (6)
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where rc is a parameter, and d =(—) d . This Hamiltonian yields an O(6) solution. '' Figure 1(a) shows the po-
tentials V(P = —,', y), V(P = 1, y), and V(P = J2, y) in (5) as functions of y for the Hamiltonian (6) with
tc=0.05(MeV) and N =5. The potential minimum is indeed found at p= 1 and y=30'. The projected wave function
in (5) is denoted as &(N, P, y) = JVPl=o i N, P, y), where A' is a normalization constant.

In order to see the structure of +(N, p, y), the overlap between this state and the O(6) state is evaluated,

X(N, v~, P, y) = ([N], rr =N, r = 3 vz, v~, L =0
~
@(N,P, y) ). (7)

Figure l(b) shows the square of this overlap for v~=0 and P= —,', 1, and J2 as a function of y. Note that the O(6)
ground state has v~ =0. The overlap in Fig. 1(b) becomes perfect (i.e. , unity) at P =1 and y=30'. This implies that,
although the O(6) wave function is y unstable, it can be generated from a rigid triaxial intrinsic wave function by the
angular-momentum projection, if p and y are appropriate. In other words, the y unstable and rigid triaxial descriptions
can be equivalent in the sense that they have the same wave function. To see this point more precisely, we expand the
projected state as

C&(N, P, y) =JV'g„C~, P„(cos3y) ~
[N], a =N, r =3v~, v~, L =0),

For 3 ~ N ~ 5, v& can be 0 or 1. If y is chosen so that
Pi (cos3y) =0, nonvanishing amplitude on the right-hand
side of Eq. (8) is only for the v~=0 component which is

nothing but the exact O(6) ground state. Thus, for
N ( 5, &b(N, P =1,y=30') is identical to the exact O(6)
ground state. For larger N, this identity is lost in princi-
ple, but remains in a rather good approximation. Figure
2 shows the probability [X(N, v~, P =1, y =30')] for
v&=0, 2, and 4 as a function of N. Because of @=30,
v~ = I, 3, 5, . . . are not contained in N(N, P = 1, y

=30' ).
For realistic N ((10), the wave function N(N, P =1, y
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where A' is a normalization constant, Pl stands for the
Lth-order Legendre polynomial, and

' I/2
2vg+ 1

C~,,=
(N —3 v~)!(N + 3 v~+ 3 )!

=30') is completely or nearly comprised of the v~ =0
component. For example, at N = 10, the v& =0 com-
ponent accounts for more than 99% of the projected
wave function, whereas the v& =2 component occupies
less than 1%. Only at N ) 10 does the v& =2 component
contribute practically. At N ~, however, various v&

become equally important in 6&(N, P =1,y=30'), and
the integration with respect to y in (4) is essential to ob-
tain the O(6) ground state. On the other hand, the in-

tegration is redundant for smaller N, while it still yields
the correct result.

The rigid triaxial intrinsic wave function can thus pro-
duce the y-unstable wave function in systems with a real-
istic number of bosons. This has been quite unexpected
because of the shallow minimum of the potential. For
instance, Dobes pointed out'' that the potential in (5) is
too shallow to correspond to the static triaxial rotor.

We have so far considered the ground state. Excited
states can be treated similarly. To obtain the 2+ state,
for instance, A =0+ and 2+ components are extracted
in the usual way from the intrinsic state
~N, p=l, y=30 ), and are projected onto J =2+. The
projected states are not orthogonal because of K mixing.
The Hamiltonian is then diagonalized in the subspace
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FIG. l. (a) Deformation potential V(P, y) for N=5. The
solid line is for P =1, while the dashed and dashed-dotted lines

are for P = —,
' and J2, respectively. (b) Square of the overlap

for JV =5 between the O(6) wave function and the P =1 and

y =30' projected wave function. Three lines correspond to
three values of P as in (a).
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FIG. 2. Square of the overlap between the O(6) wave func-
tion and the P= 1 and y=30' projected wave function as func-
tion of the boson number, 1V.
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FIG. 3. The exact O(6) spectrum compared to the spectrum
calculated by the projection of the rigid triaxial intrinsic state.
Numbers beside the energy levels indicate the angular momen-
ta. The nucleus is ' Pt, and the Hamiltonian is taken from
Ref. 4.

spanned by these nonorthogonal states, and (approxi-
mate) eigenenergies are obtained. For the ground state,
only A =0+ is possible, and hence there is no need for
the orthogonalization. The resultant state is nothing but
N(N, P= l, y =30'). For 1') 2+, one has to diagonal-
ize the Hamiltonian in a larger subspace with
K =0+,2+, . . . ,J, while the basic formalism remains
unchanged.

As an example of the above calculation, we shall con-
sider ' Pt, which exhibits the typical O(6) patterns, and
has been analyzed in terms of the O(6) limit. The pa-
rameters of the O(6) Hamiltonian have already been ad-
justed so as to fit the experimental data. The calculated
excitation energies of o. =% states are shown in Fig. 3.
Note that these calculated excitation energies are in

good agreement with experimental ones. By the projec-
tion method outlined above, we calculate energies from
the same Hamiltonian, assuming P= 1 and y=30 . This
spectrum is also shown in Fig. 3 ~ The agreement be-
tween the two theoretical spectra is nearly perfect. The
energies of nine states out of fifteen states shown in Fig.
3 are reproduced exactly by the projection calculation.
The largest discrepancy is 42 keV at the 42+ state, of
which the excitation energy is 1100 keV. The remark-
able agreement in Fig. 3 suggests that the rigid y=30
triaxial description holds not only for the ground state,
but also for the excited states. For N larger, this agree-
ment becomes less accurate, similarly to the v&=0 over-
lap in Fig. 2.

One can carry out the variation with respect to P and

y for each state separately in a more sophisticated calcu-
lation, although it should not make much diN'erence in

the present case. Such improved variation may be need-
ed to treat higher bands which are not shown in Fig. 3.

The Wilets- Jean model ' and the Davydov-Filippov
model are formulated basically for the classical limit,
which means N ~ in the case of IBM. ' The rigid
triaxial nuclear shape is assumed in the Davydov-
Filippov model, whereas the nuclear shape is extremely
soft in the Wilets-Jean model. ' The two models are thus
based on diAerent pictures of the nuclear shape. These
two pictures, however, give rise to the same wave func-
tion in systems with finite number of particles. This
equivalence suggests that, in such finite systems, one can
utilize the y variable as a useful tool to describe collec-
tive states, but cannot introduce the concept of the in-
trinsic triaxial nuclear surface, irrespectively of soft or
rigid. This should be an eff'ect of finiteness of the sys-
tem. The situation is, in fact, reversed in the classical
limit, N ~. Although the situation at N ~ will be
discussed in detail in a forthcoming paper, it should be
mentioned that the N ~ limit of the present intrinsic
state shows a pattern of the energy levels identical to
that of the Davydov-Filippov model. In other words, the
intrinsic state is connected at N ~ to the Davydov-
Filippov model.

We have considered so far boson systems only. The
above equivalence, however, is not limited to bosons. In
fact, one can derive the same conclusion for the SO(6)
case of the Ginocchio model' which is purely a fermion-
ic model.

The deformation potential in the P-y plane has been
widely used in BCS+Nilsson-type calculations with axial
asymmetry, where a potential minimum is often found at
y&0 . ' Although this minimum is indeed shallow par-
ticularly in the y direction, the validity of the rigid triax-
ial intrinsic state has been simply assumed rather than
examined. The present result seems to give the first
strong support to this assumption. In fact, the axially
symmetric Nilsson wave function has close similarity to
the axially symmetric IBM intrinsic state' and it is like-
ly that one can extend this similarity to axially asym-
metric cases. Further studies are in progress along this
direction.

It is obvious that the number of particles is a crucial
quantity in the above discussions. The number of bosons
is fixed in the IBM by the number of valence nucleon
pairs. ' If the boson number were set very large, we
should have been lead to a completely diA'erent con-
clusion. The importance of the finite boson number
should be emphasized.

Until now, we have considered the O(6) limit. The
rigid triaxial intrinsic state provides a good approxima-
tion to the exact solution also in situations away from the
O(6) limit, as far realistic cases are concerned. The ap-
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propriate value of y is then determined by the variation
for the potential (5). The resultant y becomes smaller in

going further away from the O(6), for instance @=0' in

the SU(3) limit. ' This consequence again supports the
BCS+Nilsson-type calculation with axial asymmetry for
transitional nuclei. Note that the angle y has to be
determined after the angular-momentum projection.
Otherwise, one may obtain completely ridiculous results.
All details will be presented in a forthcoming paper.

In conclusion, we emphasize once more that, in finite
systems, the triaxial shape may not be a well-defined
concept, and the soft and rigid triaxial descriptions can
be identical. Because of this identity, a single triaxial in-
trinsic wave function is useful in describing low-lying
collective states including ones with large deviations
from the axial symmetry, although the deformation po-
tential may have only a shallow minimum. It is very im-
portant practically that one can replace the y-unstable
description with the rigid triaxial description, because
the latter is much easier to handle. In fact, the y-

unstable system is not easy in general to describe, be-
cause the superposition over a wide range of the y vari-
able is required as shown in (3). The IBM, including
transitional situations, is a precious system where the y
instability can be analyzed exactly in a quantum-
mechanical way for finite systems. The equivalence
Ansatz introduced in this Letter should be studied fur-
ther in various nuclear many-body systems.
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