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A recent study by Zaslavskii er al. demonstrates that under certain conditions a charged particle may
be accelerated by an arbitrarily small electrostatic wave packet in a magnetic field to arbitrary energy by
the process of Arnol’d diffusion in 14 dimensions. A relativistic calculation shows, however, that the
particles can only be accelerated up to a critical energy by a wave packet above a critical amplitude.

PACS numbers: 05.45.+b, 03.20.+i, 52.50.Gj, 52.65.+z

It is well known that in Hamiltonian systems with
three or more degrees of freedom there exists so-called
Arnol’d diffusion' along a certain separatrix net covered
by a “stochastic layer” that extends over all of phase
space. Recently Zaslavskii et al.? have shown that in a
particular lower-dimensional Hamiltonian system it is
possible to have a separatrix net that spreads over the en-
tire phase plane. They estimate the thickness A of the
stochastic web into which the separatrix net is deformed
to be of order A~exp(—-const/e), where ¢ determines
the magnitude of the time-dependent perturbation.

The system actually studied by Zaslavskii et al.? in de-
tail is the motion of charged particles in a uniform mag-
netic field perturbed by an electrostatic wave packet
propagating perpendicular to this magnetic field. This is
an important problem relevant to plasma heating by
high-frequency waves through cyclotron resonances and
has been treated before by a number of authors*~® under
a variety of different configurations and approximations.
However, Zaslavskii er al.> come to an important new
conclusion: For arbitrarily small wave electric field the
particles can diffuse arbitrarily far into the region of
high energies along the stochastic web. In this Letter we
propose to examine this conclusion by introducing a rela-
tivistic treatment for the particle dynamics. In so doing
we find that Zaslavskii et al.’s conclusion is correct only
below a critical threshold for particle energies mc?y,
given by Eq. (21) and even then it requires the wave-
packet electric field to be above the threshold defined by
(25). Thus, we maintain that the stochastic web exists
for y <y, where the system may be treated as degen-
erate, but above y. the energy (action) dependence of
the cyclotron frequency, Q, becomes important, i.e.,
90/8y=0, and the system displays the normal properties
of a Hamiltonian system governed by the Kolmogorov-
Arnol’d-Moser (KAM) theorem.

The position (x,y) of a magnetized charged particle in
a wave packet is determined by

X+xy/y+Q3x/yr=(g/my)E(x,1), 1)
y=—(Q/y)x, 2)

where Q =gBo/mc is the nonrelativistic gyrofrequency

and y=[1—(x/c)?—(/c)?]1 =2 Following Zaslavskii
et al.,? we let the electric field be

E(x,0)=E Y sinlkx —nAwt)

n=—oo

=ETsinkx Y, &6t —nT), (3)
n=—oo

with T=27/Aw. Introducing (3) into (1) and (2), we
observe that the particle motion is one of free gyration in
between the impulses delivered by the wave packets at
t =nT. This allows Eq. (1) to be written in the form of a
mapping which connects the velocities at r =(n+1)7T —0
with those at 1 =nT —0. The relativistic equations of
motion are given by

Up+1="(u, +Ksinv,)cos(a/y) +rv,sin(a/y), (4)
Up+1=— (u, + Ksinv,)sin(a/y) + v, cos(a/y),  (5)
y={1+B%[(u, + K sinv, ) 2+ 0,21} /2, (6)

where u=kyx/Q, v=kyp/Q, K=—2nqEk/mQAw, a
=0T =2n0/Aw, and B=Q/kc. The nonrelativistic
form of Egs. (4) and (5) previously derived by Zaslavskii
et al.? are obtained in the limit §— O.

Let the mapping described by (4) and (5) be denoted
by M. Following standard techniques based on the ex-
pansion, M=Mo+KM+K*M>+. .., in powers of K,
it is easy to see that a particle initially at po=(ug,v¢)
will be rotated by the mapping M, through an angle
a/yo(ug,vo). If the particle is at a particular radius
po=(ué+v3)"? such that a/yy=27p/q for some incom-
mensurate pair of p and g, then g iterations of My will
return the particle to po. Thus for a given choice of p
and ¢

Pp.g =B 'lag/27p)t—11"72 (7
the fixed points of J{ form a set of concentric circles at
radii pp 4, with p=1,2, ... [lag/2x], where [x] denotes

the integer part of x. Of these points it is possible to
show that only the subset px =(p, ,cos6o,p, ,sinb)
which satisfy

q
'Zx cos [90+ 27rj5 ] sin [pp,q sin [(90+ 27rj§
=

|0
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are also fixed points of the gth iteration of the first-order will be an invariant curve under the mapping /M that im-
expansion My =(Mo+KM)9. If p/q is an irrational pedes stochastic diffusion across it and that as K— 0
number t, then the circle defined by this curve will approach a circle of radius p,.
We now expand MM in powers of K and g such that
po=p ' la/22)> = 1117, ©) P P P
2 2
. - .. =K=e<1. (10)

is the conditionally periodic surface of winding number 1. AFpi
The KAM theorem states that for some finite K there | Then equations (4) and (5) reduce to

un+1=(u,cosa+uv,sina) + K sinv, cosa+ + ap?p?(u, sina — v, cosa), an

up+,=(—u,sina+v,cosay — K sinv, sina+ + af?p?(u, cosa+rv,sina), 12)
le.,

pn+|=7{n'pn+KS(pn)+%aﬂzlpnl27?«—;:/2'["1, (13)

where R, is the rotation matrix through a, and S =(R x%)sin(§- p).
A considerable simplification in analyzing (13) occurs for the choice of a=2n/4, as noticed by Zaslavskii et al.2
With this choice we readily obtain for the fourth iteration of /M

Uy +a=Uy+2K sinv, — 782w+ v,})vp, (14)
L‘,,+4=L',,*2Ksinu,,+7r[32(u,,2+v,,2)u,,, (15)

to first order in K and B%p2 Motion arising from a continuous-time Hamiltonian, Ha, will produce an identical map-
ping when it is integrated over periods of 47; this Hamiltonian is given by

Halu,v) = — Q4flcose +cosu +T (w24 02)2] + [cosu + T (u 2+ vz)zlzj,éocos(%jAwt)}, (16)

with Q4=K/2T, I =nB2/8K. The same result can be obtained through transformations on a Hamiltonian governing
(1) and (2). The long time scale for the system evolution is 27Q4 which is much greater than the periods of the time-
dependent part of the Hamiltonian since Q4<<Aw for K < 1. Thus the time-averaged Hamiltonian is

Halu,v) = — Q4lcosu+cose +T'(u2+02)2] =const,

I quency. Thus the nonrelativistic features of the map M
a7 defined by (4) and (5) for a=2n/4, i.e., the stochastic
web, etc., are observed only for y<y. For y>y,,
p>p., KAM surfaces exist which are eventually des-
troyed as K gets larger and larger by the formation of is-
lands, etc. For general a =2np/q, the general expression
for p. in (21) must be replaced by p.=QK/ap?)'".
These predictions are confirmed over a range of K and g
when the exact mapping, (4) through (6), is used.

Half of the fixed points given by (18) and (19) are hy-
perbolic (unstable) fixed points. Symmetries (18) and
(19) allow us to group the fixed points into sets of four or
sinvg=4Tvo(ud +vd), 18) eight. Points from a given set will have the same energy
and stability properties by corresponding symmetries in

on the time scale of 27/04.

The orbits of the particles obtained by (17) agree very
well with those obtained by iteration of the full mapping.
At small p, T'(u2402)? is negligible and (17) reverts to
the nonrelativistic case discussed in Ref. 2. For large p,
i.e., high-particle energy, the T'(x?+0v2)? term dom-
inates, making orbits which roughly circle the origin at
constant radius.

The fixed points of (17), (u,v¢), are given by

sinuo=4Tuo(ug +vg). (19) (17). Two separatrix orbits will emanate from each hy-
No solutions to (18) and (19) can be found if perbolic point; these must subsequently terminate at a
hyperbolic point from the same set since in general no

|4 p?max(u,v) | > 1. (20) other set will be at the correct energy. Thus each set of

four or eight hyperbolic points is interconnected by a set
of twice as many separatrices. Since separatrices of dis-
tinct energies cannot cross each other the sets must nest
one inside the next (see Fig. 1). In this way Zaslavskii et

Since the smallest value of max(u,v) is pv/2 there can be
no solutions of (18) and (19), i.e., fixed points of Hg, for
particle energy y above

ve=+p%pH) "2 =1+ 2(Kp/n)¥?]'? al.’s infinite separatrix web? fractures into an infinity of
distinct, nonintersecting separatrix families.

=[1+ 42w}/ kcaw) 12 (21) The time-dependent terms in the Hamiltonian (16)

will perturb the separatrix motion and form the well

for a=2n/4, where wr =(gEk/m)"? is the trapping fre- known “stochastic layer” along the separatrices’ (see

1501



VOLUME 59, NUMBER 14

PHYSICAL REVIEW LETTERS

5 OCTOBER 1987

FIG. 1. Solid lines show four sets of separatrices of the aver-
aged Hamiltonian (17) with T=1.3x10 "% Dots at the inter-
sections represent the hyperbolic points. The dashed lines are
the separatrices for the nonrelativistic Hamiltonian (I'=0).

Fig. 2). Zaslavskii et al. estimated the thickness of this
layer to be 8(K)~exp(—n%/2K); since this is a local
property of the map we expect this to hold for the rela-
tivistic map as long as B%p2< 1. It should therefore be
possible for neighboring separatrices to connect via layer
overlap at points where they approach each other very
closely. This overlap allows the distinct families of
separatrices in some region to “fuse” together into a con-
nected stochastic web on which Arnol’d diffusion can
occur.

For I'p? <« 1 the solutions to (18) and (19) are, to first
order, po=(ug,v¢) =(xi,xj), and the fixed point will be
hyperbolic if i +j is odd. Using (17), we can find the en-
ergy difference between neighboring sets of hyperbolic
points to be AHs=H4(ps) —Ha(py)=— Q4T [(p5)*
— (p$)*], where pg is a hyperbolic point from the outer
set and pg from the inner set. The closest approach will
come at that point on the separatrix where the gradient
of the Hamiltonian (17) is a maximum. Since the
separatrix can be given to first order by the condition?
cosu +cosv =0, or sinu = *sinv, the magnitude of the
gradient is |VH,| =20, |sinu | < V20, The separa-
tion, d, can then be estimated by

d=|AH4|/|VHs| = (zp*/8~2K) [(pg)* = (pj)*1.

(22)

For a finite K we can decrease 3, thereby decreasing the
separation d, until it is less than the sum of the layer
thicknesses, thus causing an overlap. For py==pg > n we
can write

(pd)*— (p6) 4 =4(pg ) (p; — pb) = a27(pg ) >.

(23)
The upper bound comes from the fact that every set of
hyperbolic points has a neighbor within /27. The sub-
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FIG. 2. (a) The trajectory of a single point in the stochastic
layer of the nonrelativistic map (=0, K =1.5) iterated 10000
times. (b) Five initial conditions on the relativistic map
(3=0.01, K =1.2); the inside one is on the connected web, the
two outer points are outside p. =22.1. Notice that the region
close to the origin of (b) is equivalent to that of (a).

stitution of this into (22) gives the upper bound on d:

d < (z*B22K) pd =27 (po/p)>. (24)

If we state the overlap criterion in the form d =28(K),
where §(K) is the layer thickness, then (23) implies that
all pairs of separatrix sets inside the radius

pa=1(N2/m)6(K)1'Pp. ~(2/n) Pexp(— n2/6K)p,
(25)
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will overlap. Since (23) is a very conservative upper
bound we can expect layer overlap at radii many times
pa, but in light of (21) never beyond p..

The Arnol’d diffusion in the 1% -dimensional Hamil-
tonian system which Zaslavskii er al.? reported is a
direct consequence of the independence of the cyclotron
frequency with respect to energy. It has been shown
here that the introduction of a slight dependence due to
relativistic effects causes the Arnol’d diffusion to be re-
stricted to low-energy regimes of phase space. At a cer-
tain critical energy y. the energy (or action) dependence
of the frequency becomes great enough to admit the ap-
plication of the KAM theorem. Far below this energy
the perturbing effects of the wave work to obscure any
slight variation in frequency and Arnol’d diffusion can
occur as shown by Zaslavskii et al.? However, a finite-
amplitude perturbation is necessary to implement this
mechanism; thus there is no diffusion for an arbitrarily
small wave.
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