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Electronic Structure of a Quasiperiodic Superlattice
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The electronic structure of a quasiperiodic superlattice with slabs of A- and B-type layers is studied
within a tight-binding model by use of the transfer matrix and a perturbative approach. It is found that
the band gaps vary strongly within the two-dimensional Brillouin zone and, in the case of more than one
layer in a slab, there are a few eigenvalues for each kl~ for which the eigenstates appear to be extended in
the quasiperiodic direction. The latter is true even for the Fibonacci chain with more than one atom per
cell.

PACS numbers: 73.40.Jn

Recently Merlin et al. ' have fabricated quasiperiodic
superlattices (QPS) of GaAs-A1As with layers of GaAs
and AIAs arranged in a Fibonacci sequence (FS). Simi-
lar metallic superlattices of Cu-Nb have been fabricated
by Hu et al. Vacancy-stabilized phases of systems like
Al-Pd, where planes of Al, Pd, and vacancies are ar-
ranged in a FS, are other examples. The aim of this pa-
per is to investigate the electronic structure of such sys-
tems. Intuitively, one would expect the electronic struc-
ture normal to the layers to be similar to the Fibonacci
chain ABAABABA. . . , whose spectrum is a Cantor set
and for which the states are critical. ' However, the be-
havior of the spectrum when each A (8) is replaced by
more than one A (8) in the Fibonacci chain is not
known. This is relevant for the superlattice as each slab
can have more than one layer. ' Furthermore the
dependence of the spectrum on (i) the wave vector paral-
lel to the layers k~~ and (ii) the layer atomic arrangement
is not a priori clear. We address these questions with the
aid of a single-band tight-binding Hamiltonian on a su-
perlattice with (001) layers of the simple cubic (sc) and
the face centered cubic (fcc) lattices. Two complimenta-
ry methods are used: (a) the transfer-matrix method
which is very effective in obtaining accurate numbers
and (b) a perturbative scheme which allows us to obtain
approximate analytical expressions for the band gaps
and their positions. These serve a useful role in under-
standing the results obtained in (a). We demonstrate

that the spectrum depends strongly on k~~ and that there
are a few states for each k~~ which appear to be extended
along the QP direction also.

Consider a superlattice with slabs of N layers of A and
M layers of B atoms arranged in a FS. Then the equa-
tion of motion for an electron in the tight-binding model
1s

[E —e'(R) ] y(R) =g~t (R,R+ 8) y(R+ b),

where 8' runs over all the nearest neighbors. Using
R =(R~~,s) with R~~ denoting the component parallel to
the layers and s the layer index, we have e(R) =e(s) for
the site energies, and t(R, R+h) =t "(s) for the in-
tralayer and t(R, R+b) =t (s,s+1) for the interlayer
hopping integrals. On taking the Fourier transform of
(1) with respect to R~~, we get

[E —e(s) —T, ]y(k~~, s) = g T, , +yt(k~~, s+/),

where T," =2t "(s)(cosk„a+coskya) and T, , ~
~
=t (s, s

~ 1) for the sc lattice, and

T," =4t"(s)cos(k a/2)cos(k a/2),

T, , ~ ~
=2t (s,s+ 1) [cos(k a/2) +c os(k ya/2)]

for the fcc lattice with the lattice constant a. In the ma-
trix form we can write (2) as

y(kii, s+1)
lp(kii, s )

E —T," —e(s )
J

Ts,s+ l

Ts, s —]

Ts,s+1
I/f(k~~, s )

l/f (k
~ ~, s 1 ) (3)

The above transfer matrix 7' can be used to obtain
necessary information about the electronic spectra much
as in the 1D case. If the sequence of layers repeats after
p slabs, then the spectrum is given by the product M~ of
transfer matrices of p slabs (here p is taken to be a Fi-
bonacci number).

We first consider the case N =M = 1 (case 1) for

which the site energies e(s) are eg (eft) for A (8) lay-
ers. The hopping integrals t "(s) within a layer are either
t~~ or t~~ whereas the interlayer hopping integrals
t (s,s+1) take on two values t~~ (here taken to be the
same as for the A layers) or t~~ which is chosen to be
(t~~ttttt) ' . There are four difterent transfer matrices
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corresponding to the local sequences ABA, BAB, AAB,
and BAA of layers. It is convenient to define three new
transfer matrices

7 I 7 (lAB~1BA )7 (tBA ~ tAB )~

T3 7 (1AB, 1BA )T(1BA 1AA )

(4)

where the arguments of T denote t (s,s —I ) and
t (s,s+ 1). Then starting with TI (corresponding to

p =2), transfer matrices for successive FS can be ob-
tained by the following replacements: T f T2T3,
T2 T3 and 7 3 7 2T t . Since the determinant of the
transfer matrix is unity, the allowed energy regions are
obtained by the trace condition xp = —,

'
trMp 1.

Figure 1 shows the results for the sc superlattice along
the three high-symmetry directions in the 2D Brillouin
zone with p =9 and t.'~ = —0.25, t. ~ =0.25, t~~ = —1.0,
and tBB = —1.2 (in units of

~ tAA ~
). Although for a

given kt~ triadic Cantor structure persists as in the case of
the QP chain (QPC), the dependence of gaps on kii is
strong. Whereas at the I point the gaps are quite
small, they are large around the M point. There is a
crossover of the largest gap from the lower side to the
upper side as we go from I to L or the M point. These
features will be explained later with use of an approxi-
mate analytical scheme for the band gaps.

To illustrate th~ eAect of more than one layer in each
slab (case II) ve have taken for simplicity either d, t
=tpg —tgg =0 ur ht. =t.g Eg =0. Also when At~0 the
interlayer hopping integrals are assumed to take only
two values, namely tzz and tzz with tz z =tzz and
ta ~ =t~~. With this choice it is possible to write
for the pth (p ) 2) FS the recursion relation

I I
= (EB —6'A ) /41 (5)

which is the same as for the QPC and interestingly is in-
dependent of kii. The spectrum shown in Fig. 2(a) is
thus the same for the entire 2D Brillouin zone except for
an energy shift.

For M=N=2,

[(w/2) —[2t (cosk a + cask&a ) —E l }
I2 =I ( (6)]4

where we have used eB = —
eA =w/2. The fact that the

dependence of I2 on k~~ appears in the above form sug-
gests that the gaps remain the same for difrerent values
of k~~, except for a shift in the energy. This is in fact
borne out by our numerical calculations. The effect of
doubling the thickness of the slabs is to introduce [Fig.
2(b)] mini bands, each of which develops the Cantor-set
structure as the FS progresses. An important diA'erence
is that I2 is zero at E =2t(cosk„a+costa) ~ w/2 and is
therefore an eigenstate for successive FS. For N=M
=3,

I3 =I I (1 DA ) '(1 —DB') '— (7)

where D; =(e;+T, E)/t with i =A—, B Again, I3 v. an-
ishes at DA =1 or DB =1. For w =

~
t

~

=1, in both these
cases the gap vanishes at E = —3.5 and —4.5. Therefore

Mp Mp —2Mp —] - Here Mo and M
&

are the products of
M and N transfer matrices for 8 and A layers, respec-
tively. The above recursion relation allows us to use the
method of trace map for which

2 2 2I xp+ ] +xp +xp —] 2xp+ (xpxp —] 1

is a conserved quantity. In the simplest case for the sc
lattice with l'gg =tgp =E and N =M =1,
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FIG. I. Allowed energy states for a (001) simple cubic Fi-

bonacci superlattice along the three high-symmetry directions
in the 2D Brillouin zone. N (M) represents the number of A
(8) layers in a slab. Energies are in units of t tAA t.
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FIG. 2. Allowed energy states for a (001) sc superlattice at
kii =0. (a)-(f) At =0; (g), (h) eA =eB =0. (g) corresponds to
the spectrum of a chain shifted by —4.0.
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FIG. 3. Variation of the wave function on successive layers
for E = —3.5. (a) N=M=2, (b) 1V =M=3. y(0) = (1)=l.
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we expect the corresponding states to be extended, as
indeed we found them to be in our calculations. This is
shown in Fig. 3. (We have checked this up to 2500 lay-
ers. ) For N=M =3, I3 vanishes also at E = —2.5 and
—5.5. Similar states are also found for N=M=4. It
appears that the number of such states increases with
N, M. Also close to such energies several states are al-
most periodic. The envelope of the corresponding wave
function has the character of a standing wave whose
"'wavelength" decreases as one moves away from ener-
gies for which I=0. From these results we can say in
general that for N, M) I, there are energies for each kI~

where the gap disappears and for which the states are
extended.

The two major gaps move toward the edges of the
spectrum with increasing N and M; and their magnitude
appears to be insensitive to the number of layers, and it
scales approximately with Ae [compare Figs. 2(a) and
2(f)]. Similar results have been obtained for NAM and,
as an example, Fig. 2(e) shows the results for N =3 and
M 2. In the case when h, e=O and h, t~O, for a given
k~I, the spectrum is asymmetric about E =0 for the QPS
in contrast to the QPC where it is symmetric. This is be-
cause the intralayer hopping integrals act as site energies
of an "equivalent chain" problem [see Eq. (13)]. For
the same reason the gaps are also much larger as com-

-11 0-

-13.0
X X

FIG. 4. Same as in Fig. 1 for a (001) fcc superlattice with
ht =0.

pared to the QPC [see Fig. 2(g) and 2(h)].
The spectrum of an fcc QPS with N=M=l and

h.t =0 is shown in Fig. 4. It can be seen that the gaps
depend on k~~ in contrast to the sc case. The most
dramatic situation arises at the M point where the spec-
trum has just two points separated by he, one corre-
sponding to all the states on A sites and the other to all
the states on 8 sites, their ratio being the golden mean
z=(45+ I)/2. These are the two singularities in the
spectrum of the QPS corresponding to the singularities
in the density of states of the pure A or 8 component
with the fcc lattice.

These results are better understood by an approximate
analytical scheme to obtain the band gaps. As the
method is perturbative in nature, the actual values of the
gaps are good only for small or moderate At and/or Ae.
However, in the absence of any analytical scheme to cal-
culate the exact band gaps, our method is very useful.
Following our earlier work, (2) can be cast in the fol-
lowing form by Fourier transformation with respect to s.
For the sc lattice we have

EItr(kII, k, ) = dk'[e(k')+ [exp( —ik, a)+exp(i(k, —k')a)]t (k')+2(cosk +akco& s)ta(k')fly(kII, k k'), (8)

Ey(kII, k, ) =g „U„y(kII,k, —q„), (9)

w here q„=2m(m+nz)/(M+Nz)a, 0~ q„&2x, de-
note the reciprocal lattice vectors in the z direction (m, n

where t (k'), t'(k'), and e(k') are the structure factors
of the interlayer, intralayer, and site integrals. These
can be obtained by projection method for any kind of
aperiodic sequence following Refs. 5 and 7. This enables
us to write (8) as

integers) and U„ is given by the expression within the
curly braces with k, =q„ in (8). It is clear that the
band gaps occur at k, =q„ /2 and to the lowest order
these can be obtained by evaluation of (9) at k,
= ~ q„ /2 as in the periodic case. The magnitude AE„
of the gap is simply 2t U„ t. Here we consider two
cases corresponding to the results presented in Figs. 1

and 2 with N =M. Following Refs. 5 and 7 we have for
case I

t„~ [2t~tt exp( —2i8„)sin8„+t~~ exp[ —i(1+4z)/z8 ]sin(8„ /z)]/[(I+ z)8„], (10)
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and in general for cases I and II
/V —]

f,m
= g e

' '[f~e ' " ' sin(0„r)+f2e ' " sin0„]/[NO„(1+r)],
X=0

where f„=t„" (e„)with f~ =t~~ (eq) and fq =tea (ez), and O„=z(m —n)/(1+r).
Using Eqs. (8)-(11),we obtain for case 1

AE„~ =4((Ar sin20„~ ) + [Ar "(cosk„a + cosk~a ) +Ae/2] sin O„m

+ Icos[(q„a+20„m)/2]]sin20„sin0„~ [2A Ar "(cosk a+cosk~a)+At Ae]) 'i /[(1+ r)0„],
and for case II

AE„=2
~
AE

~
[sin(0„)/(1+ r) 0„]

~
sin(Nq„a/2)/N sin(q„a/2) ~, (13)

where

E; =e;+2t;; [cosk a+cosk~a+exp(iq„a/2)],

i =A, B;

~E =Eg —E8, and ~t =t~~ —t~,~.

From (12), the dependence of AE„on k~~ is clearly
seen. Also its dependence on he, ht, and h, t is not
simple. At the I point the Ae, ht, and ht terms com-
pete leading to small gaps, whereas at the M point they
add and hence the dominant gaps are large. The pre-
dicted values of all the dominant gaps at the I point are
found to be in good agreement" with those obtained by
the transfer-matrix method. At the M point there is a
15% mean error which is expected in the perturbative
theory. However, (12) predicts all the features correctly
including the reversal of the dominant gaps. For the
case At =0, it follows from (13) that AE„ is indepen-
dent of k~~ and it scales with Ae. Also for N & 1 since
0 ~ q„&2~, there are JV sets of bands, the first one
ending at M =N =1, where q~~ =2~/Na The dominant.
gaps now occur at (m, n) =(1,0) and (0, 1) at the lower
end and (N —1,N) and (N, N —1) at the upper end.
Hence as the number of layers increases the gaps move
towards the extreme ends of the spectrum. The insensi-
tivity of these gaps as a function of % is due to the fact
that

~
sin(Nq„a/2)/N sin(q„a/2)

~
is a slowly varying

function of IV. Indeed in the limit of large %, this takes
a value of sin[a/(1+ r)] [x/(1+ r)] '. Thus the pertur-
bative approach explains most of the features of the
spectrum obtained in Figs. 1 and 2.

In summary, we find a strong variation of band gaps in

the 2D Brillouin zone of a quasiperiodic superlattice and

this should be important in understanding the electronic
properties of such superlattices. The variation of gaps
has been shown to be due to competition between site, in-

terlayer, and intralayer integrals. An important finding
is the occurrence of extended states in the QP direction
when there is more than one layer per slab. The same is
true even for a QPC when there is more than one atom
per cell. This should be important for understanding the
transport properties of such quasiperiodic systems. The
electronic spectrum of the superlattice shows van Hove
singularities which correspond to the underlying periodic
lattice. Some of the results presented here are expected
to be true for more realistic models and we hope that this
paper will stimulate further work on such systems.
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