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Theory of Thermal Relaxation of Electrons in Metals
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If electrons in a metal are heated to a temperature T, greater than the lattice temperature TI, the
electron-phonon interaction causes temperature relaxation dT, /dt = yr(Tt —T, ) which is rapid for

TL) Oo. A formula yr =3hZ(co')/nkaT, is derived, where k(ro') =q/M is an important parameter in

the theory of superconductivity. Quantitative agreement with recent experiments is good.

PACS numbers: 72. 15.Lh, 63.20.Kr, 71.38.+i, 79.20.Ds

Recent developments in ultrafast laser pulses have

opened a new field of time-resolved spectroscopy. ' Sev-
eral groups have reported time-resolved observations
of the thermal relaxation of hot electrons in metals. In
these experiments, a laser pulse of =50-300 fs (1
fs =10 ' s) duration created a nonequilibrium electron
distribution, leaving the lattice temperature TL =300 K
essentially unchanged. Then, over a time scale of a few
picoseconds (10 ' s) the electrons were observed to re-
turn to a local equilibrium at a somewhat elevated tem-
perature, with electron-phonon interactions causing an
equilibrium distribution of the excess energy between the
electronic and lattice subsystems in a time equal to a few

phonon oscillation periods. Finally, a slower relaxation
process dominated by heat diA'usion returned the system
to the ambient temperature.

As pointed out by various authors the rate of return
to local equilibrium is governed solely by electron-

phonon processes, unlike steady-state transport experi-
ments which always measure a combined rate caused by
all available relaxation processes. In this paper I derive
a simple formula for the thermal relaxation rate, namely

yr =36k(ru )/trkaT. The factor X(ro ) is of great in-

terest in the theory of the superconducting transition
temperature T„both because of the central role of X in

determining T, and because the relative simplicity of
the product X(co ) =g, tl, /M, (where the sum is over
atoms a of mass M, in the unit cell, and g, is a Fermi-
surface average scattering of atom a per unit displace-
ment) has made possible many microscopic calcula-
tions. No other experiment is known which directly
probes X(cu ), and few experiments so nicely separate
electron-phonon from other eAects.

The rates of change of electron and phonon distribu-
tions F~ and Ng due to electron-phonon collisions are
given by standard Bloch-Boltzmann-Peierls formulas:
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If the distributions Fk(t) and Ng(t) are known at t=0,
then Eqs. (1) and (2) determine their evolution at all fu-
ture times provided (1) diA'usion driven by spatial inho-
mogeneity is negligible; (2) acceleration due to both
external and internal (space-charge) fields is negligible;

where k and Q are short for the electron or phonon
quantum numbers (k, n) and (Q,j), respectively, and Q
is always ~ (k —k'). N, is the number of cells in the

sample; the electron-phonon matrix element Mkk. is nor-
malized to the unit cell and has magnitude (EFAcuD) '

The extra factor of 2 in Eq. (2) accounts for electron-
spin degeneracy. It is easily verified that the rates (1)
and (2) conserve total energy:

! and (3) no other collision processes are important. The
model used in this paper is as follows: (a) Other col-
lision processes such as electron-electron (Coulomb) and
phonon-phonon (anharmonic) are active in keeping the
distribution FI, and Ng equal to local equilibrium distri-
butions Iexp[(ek —p)/kaT, (t)]+ I] ' and [exp[6cug/
k&TL(t)] —I[ ' characterized by separate electron and
lattice temperatures T, and TL which depend on time;
(b) diffusion is negligible because of the short time scale
and constrained geometry; (c) the laser driving field has
disappeared by t =0 leaving the electrons at an elevated
temperature T, (0) and the lattice essentially undis-
turbed. Under these assumptions, Eqs. (1) and (2) com-
pletely govern the subsequent energy redistribution. The
assumption that the distributions F and N are always
thermal is of course incorrect at some level, possibly only
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in detail or possibly more seriously. However, experimental monitors are so far consistent with the notion that even
if F and N are athermal, they are still adequately characterized by a thermal distribution at equivalent energy. In oth-
er words, deviation of F and N from local thermal populations may not in fact have much influence on the energy relax-
ation described by Eqs. (1) and (2).

Now calculate the rate of energy exchange:

E, =2+k EgFt, =Ep+ 2 Te,

EL =gghtogNg =3N, kBTL,

(BE /Bt) =(4 /hN, )g„„hto, g ~ M„„~ [S(k,k')]6(ek —e„,+ htog).

(4)

(s)

(6)

The electron thermal energy is governed by the linear heat-capacity coefficient ) =tr N, N(t.'F)kBz/3, where N(EF) is the
density of state of both spins per unit cell, and the electron-phonon enhancement factor (I+X) is intentionally omitted
because the temperatures are all assumed comparable to or greater than the Debye temperature. ' The thermal factor
in Eq. (6) is

S(k,k') =(Fk —Ft, , )Ng —Fk, (1 —Fk). (7)

Equations (6) and (7) require some relabeling of dummy variables to derive. Next, three factors of I are inserted into
Eq. (6), namely fdeB(ek —e), fdic'6(ek —e'), and fdn6(cog —n). Then Eq. (6) can be rewritten in terms of the
"electron-phonon spectral function" a F,

a'F(e, e', n) = [2/hN, 'N(~F)]g„k
~ ~kk ~ '&(n'og

—n)&(Ek E)~(Ei, 8 ).

This function has n variation on a scale of toD but e and e' variation only on a much larger energy scale, I/N(eF).
Therefore, inside Eq. (6), it is legitimate and customary to neglect the e and e' dependence of a F, with use of the
value a F(eF, eF, n):—a F(n). Then Eq. (6) becomes

E, p OO

=2zN, N(eF)„' dn a F(n) hn& dede'j[f(e) —f(e')]N(n, TL) f(e') [I ——f(e)] 8]'(e —e'+ h n),
Bt

where f(e) is the Fermi-Dirac function at T=T„and N(n, TL) is the Bose-Einstein distribution at T=TL. Now the
e and e' integrals in Eq. (9) can be done, yielding

E, ~ OO

=2trN, N(EF) dn a F(n)(hn) [N(n, Tt. ) —N(n, T, )]. (10)

This formula translates the free-electron gas Eq. (6) of Kaganov, Lifshitz, and Tanatarov into modern terminology
appropriate to arbitrary electronic spectra.

The high-T limit of Eq. (10) has a particularly simple form in terms of the moments of a F(n ) appearing in super-
conductivity theory:

p oo

a(co") =2„dn[a'F(n)/n]n", (ii)
where the coupling constant X, which determines T, is the same as X(to ). If we make a Taylor expansion of Eq. (10) in

terms of h n/kaT, the result is

BE,/Bt = hN, N(eF)k[(to ) —h, (to )/12kBT, TL+. . . ]kB(TL —T, ).

Now use Eq. (4) to convert this into a temperature relaxation rate:

BT,/Bt = yt. (TL —T, ),

yr = (3hZ(co )/trktiT, )(l —h (to )/12(to )ktiT, TL+. . . ).

(i2)

(i4)

Equation (14) includes a first thermal correction factor, which is likely to be quite small under most experimental con-
ditions.

An alternative version of Eqs. (10), (12), and (14) follows from the identity''

a F(n) =[2trhN, N(e„)] 'gg(I g/tog)6(cog —n), (is)
where I g is the electron-phonon part of the phonon "quasiparticle" relaxation time which governs the return to equilib-
rium of a small disturbance,

I g (4~~g/N, )g, I ~~,k+ g I
'&(~k —~F)~(~k+ g

—~F). (16)
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I ~ is also the electron-phonon part of the half-width at half maximum of the neutron-scattering cross section 5(g, ca).
With use of Eq. (15), Eqs. (10) and (12) become

dE, /dt =g~r~ 6 ~~ [N(~~, T, ) —N(~~, T, )]
—(g~r ~)k, (Tz —T, ) =1[Ez(Tz) E,—(T, )1,

(17)

(i8)

where Eq. (18) is the high T limit and Ez(T) is the lat-
tice energy 3 vN, k BT in the high-T limit, v is the number
of atoms per cell, and I is the Q average of I g. Since
dE, /dt = —dEz/dt, Eq. (18) defines the lattice energy
relaxation rate I z z = —(dEz/dt)/AEz =I . The energy
relaxation rate of the lattice is the same as the quasipar-
ticle relaxation rate of the lattice, at least at high T. Cu-
riously, the same is not true for the electrons. If we

define an electron energy relaxation rate by I, E
= —(dE, /dt )/AE„ the high-T result is 36K(ca )/
trkaT, „identica. l to the leading term of (14) except with
T„=(T,+. Tz)/2 in place of T, . The quasiparticle re-
laxation rate for electrons is 2trkkBTz/A. This is faster
at high T, than yr by a factor 2tr kBTeTz/3~
Electron energy loss at high T by phonon emission is a
multistep process.

This theory can now be used to extract values of k(co )
for Cu (Ref. 3), Au (Ref. 4), and W (Ref. 2). Elsayed-
Ali et al. quote a value for Cu of G =1&&10' W/m3 K,
where G is the coefficient of Tz —T, in Eq. (12). With
use of the experimental value of y to eliminate N, N(eF),
X(co ) is 61 meV . Khan et al, ' have calculated X(co )
for Cu to be 43 meV which is within the ~ 50% implied
accuracy of the measurement of 6 in Ref. 3. The value
of Ref. 11 corresponded to the separate parts k =0.111
and (co ) =387 (meV) .

For gold, the data of Figs. 2 and 3 of Ref. 4 were ana-
lyzed under the assumptions that the vertical axis,
AR/R, is proportional to T and that the peak tempera-
ture, as estimated, is 10 K. Then the temperature re-
laxation rate at both t = 1 and 2 ps corresponds to
y, T, =4&&10' K/s, which yields k(co ) =24 meV2.
Given that Op for Au is about one-half of OD for Cu, this
result is consistent with a X value some~hat larger in Au
than in Cu. This is consistent with other estimates '

which give X = 0.15 for Au.
For %, Fujimoto et a(. estimate a value C, y,

= (0.5- 1 ) x 10 ' W/cm K, which translates into
X(to ) =100-200 meV . One expects X(co ) to be about
3 times larger for W than Cu because ) is =0.3 (Ref. 7)
and OD values are very similar. Thus for all three metals,
X(co') has been extracted to 50% accuracy. Improve-
ments in ultrafast spectroscopy should make possible ab-
solute measurements of k(cu2) to significantly better ac-
curacy, and would provide a valuable probe of electron-
phonon coupling strengths.

Equation (10) is valid for all T, and Tz given the ac-
curacy of the underlying assumptions. There have re-
cently been several elegant ultralow-temperature mea-
surements' ' of thermal relaxation in metals. In pure
metals, a F has the form k*(co/coo) at small cu, where

which yields an energy relaxation rate

288$(5) k* kiiT,
~e,E =

1 +k 6coD

i —(T,/T, )'
COD

i —(T,/T, )'
(20)

This can be compared with the quasiparticle relaxation
rate averaged by —r)f/r)e over states near the Fermi en-

ergy, '

' 3

r, =24~g(3)
keT.

1+X Ao)D
(2i)

The rates (20) and (21) agree to 5% if Tz/T, «1 but
energy relaxation is faster by 2.62 if

~ T, —Tz
~

&&T,

Energy relaxation rates proportional to T" with n = 3
have been measured in several metals.
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