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Results of a multidimensional (p2, 7, p4, to, Z, and N) search for nuclear superdeformed config-
urations are presented. Calculations based on a realistic deformed average field give a relatively strong
dependence of the "super" elongation on the particle number. This dependence is shown to be a cyclic
function of the particle number. It originates from the pseudospin and pseudo-SU(3) symmetries which
are obeyed approximately in a realistic average field.
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Nuclear states are commonly called superdeformed if
the spatial distribution of nuclear matter is strongly
elongated (cf. related harmonic-oscillator structures ').
In view of the recent discovery of a rotational band
built on the superdeformed states in ' Dy and extending
up to I,, „=60, and another one in ' Ce extending up
to I,, „=52, the prospect of detailed studies of the struc-
ture, population, and decay of such bands opens up. The
need for their uniform and possibly general classification
and abundance scheme becomes apparent.

We base our analysis on the deformed Woods-Saxon
average field and the Strutinsky approach in the ver-
sions of Andersson et al. , Bengtsson and Ragnarsson,
and Dudek and Nazarewicz. We consider the deforma-
tion space spanned by the quadrupole (P2, y) and the
hexadecapole (P4) degrees of freedom. Nuclear rotation
is accounted for by the introduction of the rotational fre-
quency e in the usual one-dimensional cranking ap-
proach (cf., e.g. , Ref. 6).

Let us summarize the results of our multistep pro-
cedure. First the single-particle levels were tabulated
versus P2, y and P4 at cu =0. The strongest shell-
structure eAects resulted for axial symmetry, i.e., for
y=O', many of them weakly dependent on P4 in a rela-
tively large P4 range. Therefore the global features of
the Woods-Saxon single-particle spectra will be dis-
cussed as functions of Pq and displayed along one single
trajectory in (Pq, P4) space representative of many nu-
clei. Systematic detailed calculations showed that the
steepest-descent lines in the total-energy surfaces lie

close to this trajectory for most of the nuclei considered
here. The neutron single-particle levels are displayed
along such a trajectory in Fig. 1. The areas of increased
level density are shaded. The spectrum exhibits several
stripes of low level density. We refer to the stripes as
chains of deformed shell closures. Analogous features
hold for the proton spectrum and are strikingly similar to
those found" in the Nilsson model.

To suggest a possible origin of the regularities demon-
strated in Fig. 1, we introduce the spectrum of the
pseudo-oscillator. It is obtained from that of the har-
monic oscillator by ignoring all the states which, after in-
troduction of spin-orbit interaction, will give rise to the
l =I,„=N (intruder) orbitals. We denumerate the
remaining levels using the pseudo-oscillator quantum
numbers N =N —1, n, =n„each level carrying
(2s+1)(N —n, +1) degeneracy (spin s = —,

' ). A Ham-
iltonian generating such a spectrum is said to obey the
pseudo-SU(3) symmetry. ' An example of the result-
ing single-particle level pattern is given in Fig. 2, where
the appropriately modeled intruder levels have also been
placed. Although the intruder levels do not belong to the
pseudo-oscillator pattern, their presence is necessary to
reproduce correctly the realistic occupation scheme.

Striking similarities between the spectra of Figs. 1 and
2 may be viewed as a manifestation of the approximate
pseudo-SU(3) symmetry of the deformed Woods-Saxon
potential (for the Nilsson potential cf. Ref. 11).

Let us also emphasize the presence of yet another ap-
proximate symmetry (called pseudospin ' ) in the axial-

1987 The American Physical Society 1405



VOLUME 59, NUMBER 13 PHYSICAL REVIEW LETTERS

WOODS-SAXON POTENTIAL

28 SEPTEMBER 1987

—12-
13

—15-
—16-
—17-

1g
—20- 4
—21

C4

22
—23

—25— 5/2+
1/2—

e/2 „.1 2—: ~-::==.pC ~': 9/&—

84'~. 86 - 9/2+
1 2+

3/2 / ~ 0

aa -, ': 1/2+
"..'. 3/2—64~ I~', 1/2

1 2

. 3/2—

58
1/2+

50 50 '', ,-:~~--- g ~ . 1/2+46 - 1/2—

A VA V 3/2—

"3/2—8 ~tJ U ~ Qa

1

/ ' 1/2+
5/2 ",~,

'' '

Q0
I'V

28 -%„, 28
-'- —.~& ., ~,f

24

i I I I I I I

p 6 Io

QUADRUPOLE DEFORMATION

FIG. l. Neutron single-particle spectra calculated along (pz, p4, y=O') trajectory which minimizes the liquid-drop-mode] energy
of Ref. 7 at spin I=60. Groups of single-particle levels analogous to those in the pseudo-oscillator scheme of Fig. 2 are shaded. The
displayed spectrum corresponds to nucleus Zp =66, Np =86 but is representative for a broad range of particle numbers. Relation to
the pseudo-SU(3) symmetry is suggested via analogies to results in Fig. 2; cf. also Refs. 8 —10.

ly symmetric Woods-Saxon field. Its manifestation lies
in an approximate degeneracy between the deformed
field levels [Nn, A] n =~+,i~ and [¹A]n =~,&~

(in-
truder states excluded). These levels originate from the
l&

—I+~i2 and (1+2) = +, spherical orbitals, cf. Fig. I;
l =1+ 1 and A denotes projection of l. It has been
shown that such a symmetry implies an approximate10, 12

conservation of the total projections QA(i) and gs. (i)
separately ( fl =A+ s, ), thus providing an additional
classification of the multiparticle wave functions, impor-
tant especially for light and very heavy nuclei where su-
perdeformation appears already at very low spin.

One of the very successful nuclear eftective interac-

tions, the surface 6 interaction, is known to obey the
pseudo-SU(3) symmetry; cf. , e.g. , Ref. 8. It seems par-
ticularly attractive to interpret the analogies between the
results in Figs. 1 and 2 in terms of an approximate sym-
metry of the two-body interactions satisfied as well by
the realistic average field.

It is a priori not obvious that the gaps present in the
spectra of Fig. 1 are su%ciently strong to produce local
minima in the total-energy surfaces at high spins. To
check this we applied the Strutinsky approximation in
the version of Ref. 6, cf. results in Fig. 3.

The local minima corresponding to the strongly
elongated (superdeformed) configurations of nuclei with
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VARIATION in the SUPER —ELONGATION
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pared with those at m =0.
In summary, the realistic description of nuclear sin-

gle-particle spectra manifests approximate pseudospin
and pseudo-oscillator symmetries in the physical defor-

FIG. 3. Potential-energy surfaces in the (P2, y) plane at a
fixed spin value 1=50. The vertical axis in the field of the
figure denotes @=60' deformation (132) 0, oblate shape, non-
collective rotation) and y

= —120' (P2 & 0, prolate shape, non-
collective rotation). Rows of filled circles at AP2=0. 1 intervals
define the 6@=60' sectors. The maps are given in polar coor-
dinates and the horizontal axis is not the y =0 axis. Note in

particular that the cerium isotopes possess two elongated mini-
ma: the one at i12=0.36 due to the neutron closure N =72 and
a weaker one at Pq=0. 75 due to the proton closure Z=58.

mation range. This feature is isospin independent ~

Calculations show that the strongly elongated struc-
tures are attributed to chains of particle numbers
Within each chain deformations increase with the parti-
cle number. This coupling scheme explains a systematic
abundance of strongly elongated shapes throughout the
nuclear chart. From the existence of the chain structure
it follows that there is no sharp distinction between the
superdeformed and more familiar low-deformation re-
gions. In fact, a broad range of stable nuclear deforma-
tion originates from the same pseudo-oscillator degen-
eracy pattern.
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