
VOLUME 59, NUMBER 1 PHYSICAL REVIEW LETTERS 6 JULY 1987

Are Antiferromagnetic Spin Chains Representations of the Higher Wess-Zumino-Witten Models?
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We show that while the exactly integrable spin- —, Heisenberg antiferromagnet is a representation of
the nonlinear a model with nontrivial Wess-Zumino term, the generic massless antiferromagnet has
long-wavelength behavior equivalent to spin —, . This is demonstrated by comparing the predictions of
conformal symmetry and rotational symmetry to the gaps calculated for finite chains. The leading
corrections are eliminated, leading to stable estimates of the conformal central charge and exponents for
the spin-correlation functions.
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Some years ago Haldane' initiated a program to cal-
culate correlation functions of quantum spin chains by
mapping the long-wavelength properties onto those of
nonlinear ~T models. By a semiclassical argument map-
ping the spin chains onto an O(3) o model with topologi-
cal term 8 =a or 0 for half-integer and integer spin, re-
spectively, he argued that half-integral and integral iso-
tropic antiferromagnets diAer in that the integer chains
have a singlet ground state and fluctuation-induced gap
while the half-integer cases, like the exactly soluble case
of spin 2, remain massless. His predictions for spin 1

are supported by both numerical studies and neutron-
scattering experiments. For higher half-integral spin
the ground state is either degenerate or has massless ex-
citations which suggests but does not prove critical
correlations.

The question remains: Are the higher spin 5= —', ,
critical and if so what are the universality

classes? Haldane's argument suggested asymptotically
similar behavior as for spin 2, the same conclusion was
reached by Schulz by a Jordan-Wigner transformation,
using a procedure that strictly speaking is valid only in
the easy plane region of an anisotropic XXZ Hamiltoni-
an. On the other hand, a calculation of the conformal
central charge for a special antiferromagnetic Hamil-
tonian integrable by the Bethe Ansatz lead Aleck to
identify these models with the Lagrangean of fermions
analyzed by Witten possessing a topological term with
integer coefTicient k =2S. Furthermore, by a non-
Abelian bosonization that, unlike the Jordan- Wigner
procedure, conserves rotational isotropy, AfBeck argued
that the asymptotic behavior was generic for the iso-
tropic antiferromagnet and found support for this in ex-
perimental results on the spin- —', antiferromagnet
tetramethyl ammonium manganese trichloride. ' This is
an interesting idea in that it would allow several experi-
mental realizations of strongly interacting many-body

systems behaving quite diA'erently from weakly interact-
ing systems. Furthermore, recent progress in the appli-
cation of conformal symmetries to quantum field theories
in one spatial dimension allows us to relate the algebra of
operators of the corresponding field theory to experimen-
tal observables. '' Thus, for example, the central charge
of the conformal algebra is experimentally observable as
the ratio of the coe%cient of linear specific heat to the
spin-wave velocity as measured by inelastic neutron
scattering. '

The aim of this study was to resolve the issue of the
critical behavior of the antiferromagnets by calculating
the exponents for general isotropic Hamiltonians. At the
exactly soluble point there is no argument, nor is there
for spin 2 where the Wess-Zumino model with term
k =1 is equivalent to free bosons. The natural choice to
study is spin —,

' since for larger S convergence will be
slower. In principle, this is straightforward as the
diA'erent critical points have quite distinct algebras: the
conformal central charge c =3k/(2+ k) and tl = 3/
(2+k). For the numerical case taken k =2S =3 would
imply c = 5, g = —,', compared to c=1, g =1 for spin —,

'

(to is the exponent governing the power-law decay of the
spin-spin correlations).

We used the same method for calculating the critical
exponents as we did in the study of spin & and spin 1:
The conformal mapping of the infinite space-time plane
to the cylinder relates the power-law decay of correla-
tions in the plane to the amplitude of the scaled gap on
the finite cylinder. " For quantum systems the infinite
axis of the cylinder is taken to be the time coordinate;
the finite periodic coordinate, the spatial direction. The
novelty compared to the analysis of statistical mechani-
cal models defined on a two-dimensional lattice is that
we must scale the time and space dimensions by calculat-
ing a spin-wave velocity by diagonalizing the Hamiltoni-
an for finite wave number.
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The different correlation functions are distinguished
by the different quantum numbers of the excited states
that contribute. Thus by solving the Hamiltonian in
different orthogonal subspaces we can, in principle,
determine the whole operator algebra. We did this pre-
viously to distinguish different massless phases in the
spin-1 chain with easy-axis anisotropy. The conformal
central charge can be calculated from the 1/L correc-
tion to the ground-state energy density, ' again normal-
ized by the spin-wave velocity. In practice the difficulty
is that the matrix dimensions increase exponentially with
chain length L; for spin —,

' one is restricted to chains of
L =12 long and corrections to scaling decay logarithmic-
ally slowly with L."' Monte Carlo methods could
roughly double the accessible chain lengths but with the
cost of introducing numerical uncertainties.

Early results for a nearest-neighbor antiferromagnet
gave exponents that were interpreted to be in favor of
ANeck's conjecture, '" but as we shall see, are correctly
understood as crossover effects. The remedy for the slow
convergence is to study a more complete spectrum of lev-
els for finite chains. By measuring scaling dimensions
that are predicted to be degenerate in the thermodynam-
ic limit we can estimate corrections due to finite size
from a fixed length rather than by a hazardous extrapo-
lation. The crucial point is that for all coefficients k at
the fixed point as well as conformal symmetry there is
an SU(2) SSU(2) symmetry, higher than the original
SU(2) lattice symmetry. Then, in addition to the con-
formal towers of operators predicted by the Virasoro
algebra of the conformal group, the Kac-Moody algebra
of the SU(2) SSU(2) group' determines a set of opera-
tor dimensions distinct for each coupling k. However,
there are degeneracies which are independent of k. In
particular the triplet level that is the lowest excitation of
the finite chain is predicted, for all k, to be degenerate
with a singlet level in the limit L ~. The two levels
are associated with the representations s~ = 2, s, =

2 of
the left and right SU(2) symmetry groups. The leading
correction comes from a single marginally irrelevant
variable whose contribution to the two levels is the scaled
variable g times a Clebsch-Gordan coefficient ':

rl, = rl+ (s(s, ),g(L)+ O(fg(L)] '),

ti, =g+ (s(s„),g(L) +

To leading order g decays logarithmically:

go + &
ln lnL

1+rrbgolnL (]nL)

As the singlet and triplet excitations have different quan-
tum numbers it is simple to determine their splitting. By
taking as our estimate of the scaling exponent an average
j=(tl, +3rl, )/4 we eliminate the contribution of the
leading logarithmic correction. This may be futher re-
fined by the fitting of length corrections for next-to-

L = 100 L = 10

e«r«r
~««rA

«a
~««a a--

x tt

0.0 0.10 0.20

(la Ll~

O'o'
4

~ e

~ e ~ ~ ~ ~ ~ ~

c extra, polated

0.0 0.11

(,1n L)~

FIG. 1. The exponents calculated as a function of length L
(10 ~L ~ 100) from the exact solution of &b. g, and rl, con-
tain a logarithmic correction eliminated in g which is accurate-
ly given by 0.6 plus a correction linear in 1/ln2L. For central
charge c the correction is asymptotic linear in 1/ln3L. The
filled circles are values of g and c linearly extrapolated from
successive points.

leading terms.
To demonstrate the reliability of the results for the

general spin- —,
' Hamiltonian, for which we have results

for L up to 12, we examined the exactly integrable mod-
el whose eigenvalues may be found from the Bethe An-
satz for very large lengths —for length L we have 3L/2
coupled nonlinear equations. In Fig. 1 we show the re-
sults for lengths up to 100. While the individual levels of
the singlet and triplet converge extremely slowly, the
average g is accurately given by the asymptotic value
plus a correction linear in 1/ln L over the whole range
L ~ 10. We note that the (lnlnL/ln L) term found in
Ref. 13 comes from a cubic term in the P function for
g(L) and should therefore also be correctly subtracted.
Similarly the conformal central charge converges with a
term in 1/ln L. This shows that, for this Hamiltonian at
least, it is possible to extract reliable scaling dimensions
for the most relevant operators from the results for
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FIG. 2. Exponents for Hamiltonians starting from the ex-
actly soluble &b to the left and varying linearly: 8' = (1
—p) &b+p&~(0) for 0 ~ p ~ 1 on the left-hand side to the
nearest-neighbor exchange at the center p = 1. On the right-
hand side of the graph there is an increasing second-nearest-
neighbor term & /f~(Jz) with J~=(p 1)/2 for 1 ~ p ~ 1.7,
i.e. , 0» 12~ 0.35. g, and g& are from gaps for L =12 and ve-
locities extrapolated for L =8, 10, and 12; g and c are extrapo-
lated as in Fig. 1 from the gaps for L =8, 10, and 12.

L =10 and 12 extrapolated with the corrections dis-
cussed.

We now proceed to apply the same method to generic
Hamiltonians, in particular the simple nearest-neighbor
exchange. In addition to the gaps we must also estimate
the velocity, which we do by diagonalizing the Hamil-
tonian in subspaces of nonzero wave number and fitting
corrections analytic in 1/L up to second order. While we
expect corrections of the same functional form in g and c
it is not obvious that the results will be as good as at the
integrable point. We can further test reliability in two
ways: One is to vary the original Hamiltonian by addi-
tion of a second term of the same symmetry, in practice
an antiferromagnetic exchange between second nearest
neighbors:

P~(Jz) =g, (S; S, +&+JzS; S;+z). (1)
The amplitude of the marginal operator producing loga-
rithmically decaying corrections to exponents decreases
with increasing positive J2 and eventually vanishes at a
transition to a spontaneously dimerized singlet state. '

We see in the right-hand part of Fig. 2 that as a function
of J2 the individual values for g, and g, vary sharply
while the weighted average and estimated central charge
are essentially constant up to the transition at J2 = 0.33.
Very close to the transition the extrapolation is inaccu-
rate, since there should be power-law rather than loga-
rithmic convergence. For larger values of J2 the singlet
level drops sharply, converging exponentially to the
ground state which has a broken Ising symmetry, corre-

sponding to the choice of a given spin to form a singlet to
the left or the right. The triplet develops into a massive
excitation.

In the left-hand part of Fig. 2 we display results on a
line in parameter space linearly interpolating between
the Hamiltonian 'iY~(Jz=O) and the soluble

5'b =g,. [ —S; S;+)+ —,', (S; S;+))

+ —,", (s, s, , )'l. (2)

It is evident that in both c and g there is a smooth cross-
over from the multicrit;cal k=3 to the generic k=1
values. Except for a range close to the soluble point,
where crossover eAects predominate, the estimated val-
ues of c and g are stable, justifying our procedure. Oth-
er conflicting results' are seen to be a consequence of
the leading logarithmic correction: For example, the ap-
parent value of g, decreases as we move from the mul-
ticritical point towards the simple antiferromagnet.

In conclusion, we have demonstrated that the numeri-
cal results for finite chains, in conjunction with the level
structure predicted from the conformal and SU(2)
SSU(2) symmetries, enable us to show unambiguously
that the antiferromagnetic models exactly soluble by the
Bethe Ansatz are not typical. The lattice representation
(2) of the higher Wess-Zumino model constitutes a mul-
ticritical point in parameter space, a point of transition
between the generic massless phase of the isotropic anti-
ferromagnet and a singlet phase. We expect this to be
generally true of the half-integer cases; for each k & 1,
there is a relevant operator' ' (trg) of dimension
4/(2+k). This induces a crossover from the k =25 rep-
resentation. However, the present numerical results
show that the antiferromagnet stays massless, and
crosses over to a new fixed point with the critical proper-
ties of k = 1, in accord with Haldane's original hy-
pothesis. The apparent agreement of earlier studies and
the experimental results must be understood to be the
slow crossover from large-S behavior at relatively short
distances to the true asymptotic behavior of free bosons
at long distances. While the primary aim in the study of
the scaling corrections was numerical, to provide accu-
rate exponents, such corrections are also relevant for ex-
periment: The corresponding length scale is the thermal
correlation length. In any real quasi one-dimensional
antiferromagnet the strength of interchain coupling
bounds the correlation lengths for which one-dimensional
eft'ects can be observed. The present study suggests that
for 5 & 2 a large correlation length and therefore very
weak interchain coupling are necessary to observe the
true asymptotic behavior, and that in many cases cross-
over eA'ects dominate.

While we have discussed the relevance to spin chains
the results elucidate the mechanism by which the pres-
ence of topological terms in the action of nonlinear a
models can restore criticality, a matter of more general
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import, for example, in the theory of the quantum Hall
eA'ect. ' For the case studied of spin chains, to find a
realization of higher Wess-Zumino models for odd k we

must find a multicritical point at the edge of a massless
phase. The semiclassical limit 5 ~ is reached, for a
generic Hamiltonian, by a diverging crossover length
rather than by critical exponents that tend to classical
values, such as those associated with the higher models
for k ee. This provides further evidence that the O(3)
o model with topological angle B=n is equivalent to
free bosons. ' Similarly for even k the higher models

appear as multicritical points ' in the space of
integer-spin Hamiltonians but the crossover in this case
is to a massive model, as for 6 =0.
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