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Chiral-Symmetry-Breaking Phase Transition in Lattice Gauge-Higgs Theories with Fermions
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We present an analytic derivation of a chiral-symmetry-breaking transition in (zero temperature)
U(1) and Ztv lattice gauge-Higgs theories with fermions. Several remarkable properties of this transi-
tion are discussed. Implications for confining models of weak interactions are noted.
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One of the important features of quantum chromo-
dynamics is spontaneous chiral-symmetry breaking
(SZSB). One may ask whether this would occur in a
theory in which the gauge symmetry is spontaneously
"broken. " Since SXSB is a nonperturbative phenomenon,
it is advantageous to use a lattice formulation to study
this question. Because the confinement and Higgs
phases are connected in a lattice gauge theory with

Higgs fields in the fundamental representation ' one
might expect that when fermions are added, these two
phases would again be analytically connected to each
other. Since (ytlt) is nonzero in the confinement phase of
a lattice gauge theory with fermions, it would follow that
when such Higgs fields are added, this chiral condensate
would also be nonzero for all finite Ph (with 0 ~ Ps (~)
throughout the Higgs phase.

However, this naive expectation was not borne out by
a recent Monte Carlo study of a particular model

(la)Z =J QdZ„dZ„d(t„dytdU„„e
n, p

where the integral is understood as a sum for discrete G
and S =Sg+Ss+SI, with

[four-dimensional SU(2) with I = —,
' scalars and I = —,', 1

fermions, in the quenched approximation], which yielded
evidence for chiral-symmetry restoration for Pt, larger
than a critical value, Pt, , (Pg). By standard arguments,
(ytlt) must vanish nonanalytically across the curve
defined by P&, (Pg), justifying the term "chiral phase
transition. "

In the present Letter we present the first analytic
study of lattice gauge theories with both Higgs and fer-
mion fields and demonstrate that the chiral phase transi-
tion occurs in a wide class of such theories. We consider
a generic theory based on a gauge group G =U(1) or Ztv
(at zero temperature), formulated on a (hyper)cubic d-
dimensional lattice, defined in standard notation by

Sg =Ps g [1 —Re (Up), q) ],
plaq

S, = —P„g[y„'(U„„)'"y„,+ H.c.],
fl, P

SI= —,
' Q„Z„+„rt„„[(U„„)IZ„+, —(U„, „) IZ„,—]+mQ„Z„Z„,

(lb)

(lc)

(ld)

with Ps =4/g . The lattice Higgs fields are taken to
have fixed length; as is well known, this does not, in gen-
eral, imply that the continuum fields are of fixed length.
With no loss of generality, we take Pt, ~ 0. The Z„and
X„are one-component, anticommuting, staggered fer-
mion fields assigned to each lattice site n; the tl„„=[1
for p =1; ( —1)"' "" ' for It =2, . . . , d} are associ-
ated factors arising from Dirac matrices. It is advan-
tageous to use staggered fermions in studies of chiral
symmetry since they retain a continuous remnant of this
symmetry on the lattice. For G =U(1), qI and qh de-
note the fermion and Higgs charges; for Z&, qI=qp =1.
Since we wish to show the existence of a new nonanalytic
boundary between the confinement and Higgs phases due

! to the presence of fermions, we shall (unless otherwise
stated) take qt, =1; for qt, ~ 2, there would already be
such a boundary even in the absence of fermions. The
mass term is included for generality. For technical
reasons, we consider the strong-gauge-coupling limit,

Ps =0.
Usually, one begins by integrating out the fermions.

This has the advantage that thereafter one does not deal
with anticommuting variables, but the disadvantage that
it yields a nonlocal fermion determinant. We take a
diA'erent approach, performing the integration over
Higgs and gauge fields first. This yields a formulation of
the theory entirely in terms of a fermionic path integral,
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function of d [this property is seen analytically from Eq.
(8) below]. Second, since lq (2Pq)/lo(2Pq) is a decreas-
ing function of qf for fixed pq, it follows that for U(1),
Pq, is an increasing function of qf. This makes sense
physically, since one ascribes the SXSB to the gauge-
fermion interaction, and this is strengthened by increas-
ing qf, so that the SXSB phase is expected to extend fur-
ther up into the phase diagram, as a function of pi, .

Solving for pq, for various G yields the results in Table
I. We find that pq, z is an increasing function of N and
(as a corollary) pz, z & p&, Ut». Because our MFT
method is an approximation (which neglects fluctua-
tions), its predictions for pi, , for a given G and d will, of
course, differ somewhat from the true values; experience
with typical spin models suggests that for d=4, the
difference would be about 10%-20%. However, for the
dimensionalities of interest here, we expect the qualita-
tive predictions of MFT to be reliable.

The limit of large d gives further insight. Here we are
able to obtain the exact solution of (3) (and hence of the
full theory, since MFT should be exact in the limit

oo).

M =(1 —2r )/(1 —r ), for d

(see Fig. 1) which yields

lm Ic 2J~ oo
(6)

The resultant values of pq, are listed in Table I. In par-
ticular, for d

Pp, z, = —,
' Pg, z, = In( 1 + J2),

pq, ,
= —,

'
ln (4+ 3J2 ).

(7a)

(7b)

TABLE I. Values of Pq, for various G and d.

d=3

v(1), qf =1
v(l), qf =2
U(l), qf =3

Z2
Z3
Z4

1.25 + 0.02
3.98 w 0.10
8.63 ~ 0.22

0.504+ 0.006
0.792 w 0.009

1.01 ~ 0.01

1.15+ 0.01
3.60 w 0.05
7.78+ 0.12

0.478 ~ 0.004
0.755 w 0.005
0.956 ~ 0.008

1.03
3.13
6.72
0.441
0.703
0.881

Evidently, the solution for d=4 is already rather close to
that for d=~. These result are quite different from
those in all statistical-mechanical models of which we
are aware, in that for the latter, as d ~, the critical
point p, 0 (for a typical spin model, as d-
p, p, MFT =const/2d 0). In contrast, here the criti-
cal point approaches a finite constant in this limit.
Secondly, we know of no statistical-mechanical model
where the order parameter (at a given p where it is

nonzero) goes to zero as d ~, but here (ZX) does
indeed vanish in this limit. From (5), it follows that at

d =~, the critical exponent p, „~ for the order parameter
M has the usual MFT value, —,'; Fig. 1 suggests that this
value also holds for finite d, again the usual MFT behav-
101.

We have calculated, by steepest descent methods, a
1/d expansion of (3). Define 2—:2r (1 —r ) M, and
g—:(I+X/2) '. Then (3) (after division by (XX)) be-
comes

6
I =(r —l)g g ckg "(2d) +O(d '), (8)

I& =0

where co= 1, c~ = I, cq=3, c3=3(5 —
g ), c4=15(7

—3g ), cs =5(189—126( +8( ), and c6 =35(297
—270( +41( ). We have solved (8) for r, and
have obtained excellent agreement with the results from
the numerical solution of (3).

Our work shows that when one incorporates fermions
into gauge-Higgs lattice models with fundamental-
representation Higgs a new nonanalytic boundary associ-
ated with a chiral-symmetry-breaking transition appears
which was not present in the pure gauge-Higgs theory.
This has important consequences for studies of elec-
troweak interactions based on the full path integral, go-
ing beyond perturbation theory. In particular, our work
has implications for the (continuum) confining model of
weak interactions. '' Although this model was original-
ly partly motivated by the finding that the confinement
and fundamental-representation Higgs phases are analy-
tically connected, it was necessary to assume both that
the underlying SU(2) confines and that chiral symmetry
is not broken. (If the latter occurred, it would, e.g. ,
violate electric charge conservation and lead to fermion
masses of order 250 GeV. ) However, we find that in the
confinement phase (defined, as usual, as the set of points
in the phase diagram which are analytically connected to
the confinement phase of the pure gauge theory) chiral
symmetry is broken, while in the Higgs phase (defined,
again as usual, as the set of points which are analytically
connected to the SSB phase of the global theory at
pg =~) the chiral symmetry is restored. This lattice re-
sult is relevant to the continuum theory since the latter is
defined as a limit of the lattice theory as the lattice spac-
ing goes to zero at a continuous phase transition, ap-
proached from within a given phase, and consequently,
the properties of the continuum theory reflect the phase
of the lattice theory in which this limit was taken.
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