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The detailed dependence of the smallest nonzero eigenvalue of a bistable periodic Fokker-Planck
equation on the external-noise correlation time is determined for the first time numerically to tie down
contrasting theoretical predictions. The isospectrality with the Fokker-Planck equation for the metasta-
ble system defined by inversion of the bistable potential is proved analytically. This amounts to a gen-
eralized supersymmetric transformation between the corresponding non-Hermitean Hamiltonian opera-
tors.

PACS numbers: 05.40.+j, 11.20.Pb

The motivation of the present Letter is twofold. Any
one-dimensional Fokker-Planck equation (FPE) is iso-
spectral with a suitably defined Schrodinger equation.
Changing the sign of the force term leads to a new iso-
spectral FPE, the related Schrodinger equation being the
supersymmetric partner of the old one. This property
proved useful in the theory of the FPE' as well as for ap-
plication to field theories. At this point the question
arises quite naturally as to what extent the above sym-
metry survives when the diffusion term of the FPE is to
describe a time-correlated (colored) noise instead of the
usual delta-correlated (white) one. On the other hand,
the problem of the mean first-passage time in bistable
potentials is a longstanding topic in nonequilibrium sta-
tistical mechanics for its potential application in several
fields of physics, chemistry, and engineering. A recent
passionate debate ' on the validity of some approxi-
mate theories envisaged to account for colored noise
efTects evidentiated the lack of rigorous results for the
theoretical predictions to compare with. Up to now the
data available are either plagued by too great an inaccu-
racy, like in the case of the digital simulation of Ref. 5,
or forcibly limited to small potential barriers. Both the
analog simulation of Refs. 8 and 9 and the numerical
solution discussed in Ref. 10 explore the relaxation pro-
cess of a particular bistable system, namely the quartic
double-well potential, for barrier-height to noise-inten-
sity ratios up to one. In the following, we try to shed
light on both problems.

The simplest example of the class of stochastic
diff'erential equations under study is given by the two-
dimensional problem

x = f'(x)+ e(t), e =——(I/r) e+ (I/r) tl(t), (I)
where f(x) is a binding or periodic potential and the
prime denotes derivation with respect to x. e(t)
represents a stochastic Gaussian process with finite
correlation time r, i.e., (e(t)e(0)) =(D/r) exp( —

~
t ~/

r), driven by the Gaussian external noise ti (t) with
(g(t)) =0 and (ti(t)tl(0)) =2Db(t) The corresponding.
FPE for the probability distribution function P (x, e; t )

reads

6 P =LppP, Lpp = f'(x) e +L~,
Bx Bx

(2)
BI,,=—

r Be
D Bp+
z Be

Following some calculations based on the z expansion in

Ref. 4, K would take on a next-to-leading dependence on
the noise intensity proportional to D. Elsewhere
approximate estimates for x are determined which exhib-
it a linear dependence on the reciprocal of D.

In order to sort out this controversy we solved the FPE
(2) numerically for a particular choice of the potential,

f(x) = —acos(x)+bcos(2x)

with a, b & 0. The periodicity condition

P(x+2tr, e;t) =P(x, e;t)

(4)

warrants a good convergence of our numerical algorithm
for a wide range of parameter values. Potential (4) com-

bines the advantage of a simple periodic spatial expres-
sion (compare with Ref. 10) with the possibility of simu-

lating a bistable binding potential. In Fig. 1, f(x) exhib-
its two barriers, a higher one at x = ~ z and a lower one
at x =0. The barrier heights are Af(tt) =2b+a+a /8b
and hf(0) =2b —a+a /8b, respectively. If one chooses
a and b so that hf(tr)»hf(0), Xt coincides with the
mean first-passage time over the barrier at x =0, the es-

cape rate across the boundaries x = + z being negligible.

For the single-variable case it is well established that
the mean first-passage time ' in bistable potentials is

safely identified with the reciprocal of the smallest non-

vanishing eigenvalue X~ of the FPE for large barrier
heights. For our two-variable case such a connection
seems also to be plausible. In any case we calculate the
smallest nonvanishing eigenvalue Xt of (2). It decreases
with z according to the approximate law

Xt(r) =X)(0)e
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where hf(0) is the barrier height and ~x and »M
denote the position of the minima and the barrier of the
potential, respectively. For our potential f"(x ) =4b
—a /4b, I

f"(xM =0)
I

=4b —a. However, the bound-
ary conditions of the two systems are diferent: absorb-
ing walls at x =+ ~ in Ref. 12, periodicity condition
(5) for any x in the present analysis. For the sake of
comparison Xl(r) determined numerically by means of
the MCF algorithm has to be related to the smallest non-
vanishing eigenvalue obtainable for the same potential
but with periodic boundary conditions P( —tr, e;t )
= P(tt, e;t ). In view of Floquet's theorem this can be
achieved by simply doubling the spatial period of condi-
tion (5), 4tr instead of 2tr. The two problems are
equivalent provided that r is replaced with r/4 in the ini-
tial problem (1), (4), and (5), or equivalently x with 4'
on the left-hand side of Eq. (9). ' The comparison of
our numerical results with the corresponding predictions
based on the decoupling Ansatz is illustrated in Fig. 2
and looks very encouraging indeed.

Let us now address the question posed at the very
beginning of this Letter. Inverting potential (4), f(x)

—f(x) corresponds to studying a periodic metastable
potential (see Fig. 1). The MCF algorithm applies to
the new problem too, with the only difference that
P, (x, e) in Eq. (6) solely contributes to the calculation of
k, , while Pp(x, e) may be released. As a result we found
that kl for f(x) and —f(x) coincide for any value of the
noise correlation time and potential parameters to within
the numerical precision employed. This finding suggests
that the two FPE's are isospectral.

In fact, this is a rigorous result. FPE (2) is equivalent
to the eigenvalue problem

—Xy(x, e) = (L, x)pe( , x),e (i 0)

where L(x, e) =tpp Lpppp and p(x, e) =pp 'P(x, e) with

pp(x) =exp[ —f(x)/(2D)1. L(x, e) is given a simple ex-
pression in terms of creation and annihilation operators,

L(», e) = —a'a —(a')'+a'e+L„
with

a' = Jn a/6»+ f'(x)/2 JD,—

a =JD 9/Bx+f'(x)/2JD

analog simulation ). (iii) ki(0) fits very closely the
theoretical predictions available in the literature for both
Af(0) )) D (Kramers theory) and Af(0) «D (see, e.g,
Ref. 13, Chap. 11) provided that the symmetry of the
system is taken into account explicitly. '

Figure 2 confirms the D dependence of coe%cient ~—see Eq. (3)—predicted in Refs. 8-12. We want now
to compare our numerical results with a recent deter-
mination of K based on the decoupling Ansatz. ' For a
binding bistable potential K. is approximated by'

~=&f(0)f"(» )/D+ l [f"(x )+ If"(»M) I[,

In the case of white noise (r =0), L(x, e) would be Her-
mitean and Eq. (10) a Schrodinger-type equation, '

whereas L(x, e) in Eq. (11) is non-Hermitean. Analo-
gously for the inverted potential Eq. (10) must be re-
placed by

—Xy(x, e) =L(x, e)y(x, e),

L (x, e) = —aa —a —ae+ L,

(i2)

(note that a = —a, a = —a). L(x, e) is easily related
to the adjoint of L(x, e) with respect to the variable x

aL '(x, —e) =I (x, e)a (i 4)

Because k does not depend on the sign of e we have

aL t(x, —e)yt(x, —e) = —Rays(x, —e)

=L(x, E)ag (x, e). (is)

Comparing Eqs. (12) and (15), we immediately recog-
nize that L and I are isospectral with eigenfunctions

y(x, e) =ay'(x, —e). (i6)
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Equation (16) is valid provided that apt does not vanish
identically. That occurs for XO=0. For binding poten-
tials this implies deleting the steady state, whereas for
periodic boundary conditions the two steady-state distri-
butions pp(x, e) and pp(x, e) can be determined numeri-
cally as solutions to the homogeneous equations L&=0,
and L &=0, respectively. ' The proof above can be ex-
tended to any noise statistics represented by a tridiagonal
linear thermal bath operator I., according to Mori's ex-
pansion [(e=(e,e|,E'2, . . . , etv), N arbitrary, is a vector
of auxiliary variables]. ' This proves our statement.

The proof above suggests a simple supersymmetric in-
terpretation. LFp(x, e) was associated with a non-
Hermitean Hamiltonian operator L(x, e) which defines
two complete sets of orthogonal functions [+„[ and

Inverting the potential in the FPE left the eigen-
value spectrum unchanged —apart from possibly deleting
the zero eigenvalue. This operation corresponds to trans-
forming L(x, e) according to the generalized supersym-
metry description a —at and a —a. The eigen-
functions of the non-Hermitean supersymmetric partner
L(x, e) are given by aNt. The similarity to ordinary su-
persymmetry for Hamiltonian operators is evident. '
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