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Organization of Chaos

Gemunu H. Gunaratne ' and Itamar Procaccia '
' The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
(Received 24 July 1987)

The organization, encoding, and hierarchical construction of a generic chaotic attractor is presented.
A systematic calculation of the multifractal properties is accomplished, and an understanding of the
spectrum of singularities is reported. In general we expect nontrivial phase transitions in the thermo-
dynamic formalism of strange attractors.
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The quantitative understanding of the structure and
properties of generic strange attractors is one of the
remaining outstanding problems in the field of low-
dimensional chaos. ' To achieve such an understanding
for typical attractors three basic ingredients are needed:
(i) a hierarchical scheme to describe the set and its natu-
ral invariant measure with sets of increasing complexity
which are, however, under control; (ii) an encoding
which will give a unique address to all the points in these
sets of increasing complexity; and (iii) a relationship be-
tween the scaling exponents that characterize the invari-
ant measure and the properties of the points in the
hierarchical scheme. All these ingredients were at the
basis of the success of elucidating the nature of sets that
live at the borderline of chaos. It appears that now we
have reached a position where we can attempt to achieve
similar quantitative understanding of chaotic attractors
that are embedded in two dimensions. The aim of this
Letter is to report these results.

Consider a dissipative dynamical system x„+&

=M„(x„),where x„ER, and p is a set of parameters.
The linearized map at the point x„will be denoted J„.
Consider some values of the parameters p where the or-
bit is confined to a nontrivial compact chaotic attractor.
At the basis of our approach lies the realization that by
looking at sets of longer and longer periodic orbits which
belong to the closure of the attracting set (being actually
dense on typical attractors) we can hierarchically ap-
proach the chaotic set. ' Evidence for this conjecture

for both generic (nonhyperbolic) and nongeneric (hyper-
bolic) attractors was given recently. We know that the
number of periodic points of periods of length m grows
exponentially with m, the exponent being the topological
entropy. ' We can further estimate the probability of
seeing a particular orbit of length m —this probability is
inversely proportional to the positive Lyapunov number
of the orbit. '

Looking at an m-periodic orbit x~,x2, . . . , x~,x~, . . . ,
x, . . . , we define the Lyapunov numbers as the eigen-
values of the matrix J J 1. J2 J~, and write them
as exp(Xt ) and exp(X2 ), where the convention will be
that exp(k~™)& 1 and exp(X2 ) & 1. The set of all
points belonging to periodic orbits of period m will be
denoted by fixm. The probability of a particular point
x G fixm is then equal to

exp[ —Xt' '(x)]
exp[ —kt (x)]

'

and an nth-order approximant to the invariant measure
can be written as

6(y —x)exp [—X I '(x) ](vI) ( )
x c flxpl

g„„„exp[—X~™(x)]

The way that we want to characterize the scaling proper-
ties of the invariant measure is via the f(a) formalism.
In this formalism we consider the natural invariant mea-
sure defined by a long chaotic time series [xi};=&, and
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define the natural measure P„(l|,l2) of a box of size
I ~

x lq centered about the nth point x„according to

jv

P„(l|,l2) = lim —g E„(x;—x„),N.
i =1

(2)

where the relation to the more common isotropic scaling
P(l) —l' is obtained when l |=lq, leading to a =a|+aq.
Sets that have a spectrum of scaling exponents e are re-
ferred to as multifractals; a convenient characterization
of a multifractal is via the function f(a) which measures
how many times, N(a)ha, one finds the scaling exponent
falling in an interval of size Aa, N(a)ha —l ~ '~ha.
One of our goals is to calculate systematically the func-
tion f(a) for typical attractors. Numerical attempts to
do so have been quite abundant recently'; we shall
make a point here that the systematic approach present-
ed below sheds light on the deficiencies of the direct nu-

merical computations and culminates with a satisfactory
understanding of an f(a) curve for typical attractors.
This f(a) turns out to be rather nontrivial, reflecting
contributions from orbits that are close to marginality,
which in turn are tied to the nonhyperbolic nature of
typical at tractors.

The idea is now to use the periodic orbits to solve for
the scaling exponents 0;~ and a2. One relation between
the Lyapunov numbers of the orbits and their scaling ex-
ponents is easily obtained. We make use of the fact
that close to any point x„of the attractor there exists a
point belonging to some periodic orbit of length, say, m.
Thus x +„=x„,and from (2)

P„+ (l |,l2) = P„(l(, l 2).

On the other hand, after m iterations the original box
l |&& l2 has been deformed to one of size 1 |exp', ~™)
xl2exp(X2™).With use of the preservation of probabil-
ity

g (m) g (m)

P„+ (l|,l2) =P„(l)e ', l2e ' )

ll 2 1 1 2 2( —/g( ) —/g( ))
2~

where in the last step Eq. (3) has been used. Collecting
Eqs. (3)—(5) we conclude that

g(m) +g(m) p (6)

for any cycle of length m.
For hyperbolic attractors, when the measure is uni-

form in the expanding direction, Eq. (6) is sufficient for
the calculation of the f(a) spectrum. " There a| = I and
hence we have an equation for a2. We can therefore cal-

where E„(x—x„)=1 if
~ j~ & li and

~ rl ~

& lq, and zero
otherwise, with x —x„=pe|(n)+rle2(n). Here e~(n) and
e.(n) are the unit vectors of J„ in the expanding and
contracting directions, respectively. The scaling ex-
ponents are now introduced by the Ansatz

P„(l,, l, ) -l', l", ,

culate all the u values obtained from all the orbits of
length m for increasing m, collect the a values into bins,
and count how many times one finds values in each bin,
from which f(a) can be obtained. For typical attractors
it is incorrect that 0;~ =1; the measure can exhibit com-
plicated singularities in the expanding direction, and a
second equation for e

&
and a2 is needed.

To proceed we have to equip the orbits with a symbol-
ic address. Usually this is done by our finding a partition
of space into k parts (k & 1) such that each orbit can be
uniquely associated with one succession of symbols (an
itinerary) representing the parts that it visits in time.
Since the symbolic representation depends generally on
the dynamical system in question, we focus on the exam-
ple of the Henon map (x,y) (y +a —x,bx ), with
a =1.4 and b =0.3. '' lt is believed that the complex or-
bit seen numerically at these parameters has all the typi-
cal difficulties which are expected to be found in the phe-
nomenology of strange attractors. For example, a parti-
tion of the plane by the y axis is known not to yield
"good" symbolic dynamics; such a simple partition re-
sults in diferent periodic orbits having the same itiner-
ary.

A way to overcome this difticulty is to choose a parti-
tion which passes through the homoclinic tangencies. '
This is done by our refining the partition to pass between
the points of two cycles with the same itinerary which sit
closest to the present partition. The way that this is done
in practice is the following: Beginning with the y axis as
a partition we find the symbol sequences of all the orbits
until at some period k we discover two orbits with the
same itinerary. An examination of the points of these
orbits closest to the y axis results in the discovery of a
homoclinic tangency between them. The partition is
then refined to pass between these points, and this parti-
tion is used until the next degeneracy occurs. Then the
process is repeated. Having a partition, we define
Z(x) =0 if x lies on the left of the partition, and
Z(x) =1, if it lies on the right. We have ample numerical
evidence that all the periodic orbits receive a unique
itinerary in this scheme.

We are now in a position to derive the central result of
this Letter, which is the second relation between the
Lyapunov numbers and the scaling exponents. Assume
that we have found all the periodic points of length n.
We use the stable eigenvalues, exp(X2 ), to define the
local scale of an array of strips that cover the attractor.
We want, however, to find another array of strips to
achieve a grid that covers the attractor [see Fig. 1(a)].
We do so by noticing that the same periodic points are
shared by the map run backwards. We can then use the
stable eigenvalues of the backwards map, i.e. , 1/
exp(k~t 1) to define scales of strips "orthogonal" to the
first array. The horizontal strips can also be identified
by the itinerary of the periodic point in them. The in-
tersection of the horizontal and vertical strips define
boxes which can be labeled by the pair (H, T), where H
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H4 H) H) I-I( itinerary. This equation can be written as

—) ' '(H)a +&™(T)a= —&" '(H T)

At this point we rewrite Eq. (6) as

(8)

(H, T)a)+) " '(H, T)a2=0, (9)

0.8—

/
p 0.5 0.7 0.9

I

l.3 l.5

FIG. 1. (a) Schematic representation of the partition of the
attractor by horizontal and vertical strips. Horizontal strips
are denoted T; which are the itineraries of the periodic points
belonging to orbits of length m which are used to determine the
width of the strips. The vertical strips are denoted by H; which
are also the itineraries of the periodic points in them. Notice
that the order of horizontal strips is diferent from that for the
vertical ones. Here H4=TI, H2=T2 Hj T3 and H3 T4.
The points of the orbits of length m are plotted as dots,
whereas those of length 2m are plotted as stars. (h) The f(a)
curve for the Henon attractor determined from the eigenvalues
of the orbits of periods 10 and 20. The end of the smooth part
of the curve and the isolated point on the left have been joined
by a straight line.

where H and T stand for the head and the tail of the

and T stand for the itineraries of the periodic points in

the horizontal and vertical strips, respectively.
%'hat remains now is to estimate the measure of each

box. Evidently not every box contains at this stage
periodic points; in fact, most of them are empty. To
overcome this we look now at all the periodic points of
length 2m. Each of these is equipped with an itinerary
of 2m symbols, which we consider as a head and a tail of
m symbols, respectively. By matching the head and tail
of the address to vertical and horizontal strips, respec-
tively, we assign a periodic point of length 2m to any box
that matches the itinerary of the 2m points. We know
that there can be at most one point in each box, and
some boxes are still left empty, The empty boxes are as-
signed zero measure, whereas the boxes that contain a
periodic point are assigned a probability proportional to
exp( —k~ ). With use of Eq. (3)

(7)

since the boxes are defined about 2m-orbit points.
The difference between hyperbolic and nonhyperbolic

attractors can be very sharply seen from these equations.
In hyperbolic systems, where none of the orbits are close
to marginality, we have roughly X] -2X] . Substi-
tuting this in Eq. (9) and subtracting from Eq. (8) re-
sults in —2X]~ a] = —

X~ = —2k[~ or a] =1. Thus,
the only way that we can see interesting singularities in
the expanding direction is that there appear values of

which are significantly smaller than 2X~ . This
occurs if the orbit is becoming marginally stable, i.e.,
much less unstable than typical orbits.

This phenomenon certainly occurs in the Henon map.
We have found all the periodic points up to length 20,
using methods that were described before. Next we
solved Eqs. (7) and (8) using orbits of lengths 6-12, 7-
14, 8-16, 9-18, and 10-20. Nothing curious happens
when the 6-12 and 7-14 data sets are used. We find a
continuous range of a=a~+a2, where the maximum
value of a is always determined by the fixed point, which
among all the orbits has the largest ratio of

~
X~ /X2

Also a[ is about 1 all the time.
When we go to the 8-16 data sets, anomalies appear.

There are two anomalous period-16 orbits with atypical-
ly small A,

~

' . These orbits contribute anomalously
small a~ values, a] =0.59 with a total a value = 0.72.
The interesting point is that there is now a definite gap
in the a spectrum. Almost all the a values are greater
than 1, but there are isolated values of a contributed by
the anomalous orbits. When we go to the 9-18 data set
the phenomenon disappears, returning in the 10-20 data
set, again as isolated points. Evidently, in the f(a)
language, these isolated a values correspond to f=0 It.
is thus interesting to examine the total f(a) function.

To calculate the f(a) function efliciently, we turn to
the generalized dimensions Dq and their counterparts
r(q) =(q —I )D~ from which the f(a) can be found as
a Legendre transform. To form the partition sum
I (q, r) =~//1, from which r(q) is found by solving
I (q, r) =1, we focus again on Fig. 1(a). We have there
an array of boxes of sizes exp[ —)

~ (H)]xexp[kz
x (T)], each of which is equipped with a measure
exp[ —k~ (H, T)]. We can cover each of these boxes
by exp[ —k~™(H)]/exp[)q (T)] square boxes of edge
exp[f2 )(T)], each with a measure exp[ —

k~ )(H, T)]
divided by the number of these squares boxes. These are
the p; and l; that are used in the partition sum. from
which r(q) is found. f(a) then satisfies f(a)
=qr'(q) —r(q)

In Fig. 1(b) the continuous curve represents the f(a)
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function obtained from the data set of 10-20 periods, and
we believe that it is well converged. a,„ is the value ex-
pected from the contribution of the fixed point, and

f(ct,„)= I (this is the dimension of the piece of the
manifold on which the fixed point is located). The max-
imum f is close to the Hausdorff dimension Do =1.27. . .

as is should be, and the curve is tangent to the f(a) =tt
diagonal at q =1 as is expected on general grounds.

On the other hand, the f(a) function fails to go below
a =1, which is a value actually reached already between

q =2.2 and q =2.4. The reason is that in the partition
sum the isolated measures contributed by the anomalous
cycles are distributed over a considerable number of lit-
tle square boxes as described above and this singular
contribution is smeared out. We possess, however, from
the solution of Eqs. (7) and (8) the a values that they
contribute, and we plot them on the f=0 axis of Fig.
1(b). It appears that we can connect the isolated point
with a straight line to where the f(a) curve is accumu-
lating, and interpret the phenomenon as a phase transi-
tion. ' This interpretation is not in contradiction with a
conjecture by Grassberger, Badii, and Politi' that there
is indeed a phase transition at q =2.3. We point out,
however, that there is no guarantee that higher-order cy-
cles would not contribute anomalous, isolated a values
which are smaller or larger than the ones that we found
to the order that we have reached. Moreover, we feel
that this f=0 component is extremely sensitive to the
parameters a and b of the map since anomalous cycles
can be shed oA the attractor, or others may become
anomalous, upon minute changes in the parameters. ' If
there exists a phase transition, it is closer to a spin-glass
transition with a variety of "ground states" (all the mar-
ginal cycles) rather than to a single well-defined ground
state. It should be clear now that direct box-counting or
pair-counting algorithms are not very likely to discover a
phenomenon of this type. Rather, a smooth curve is like-
ly to be found even for values of a smaller than 1, ' and
the interesting physics occurring here can be completely
missed. This is but another example that the calculation
of an f(a) function should not be a goal in itself but
rather be a result of the understanding of the multifrac-
tal measure.

To conclude, we argue that a good understanding of
the scaling properties of the invariant measure of chaotic
attractors can be obtained by looking at the periodic or-
bits. Rather than considering the attractor as a non-
linear continuation of the unstable manifold of the fixed
point, we construct it from many linear bits of manifolds
of periodic points, with local scales estimated from their
eigenvalues. To stress the fact that Eq. (1) is a reason-
able approximant to the invariant measure, we show that
it can be used to calculate ergodic averages. As an ex-

ample we calculate the Lyapunov exponent of the map.
According to Eq. (1), this can be estimated to be

g„~ „„X&' '(y)exp[ —XI™(y)l
(Xl) =

exp[ —XI™(y)1

For m =18, 20, and 22 we obtain a Lyapunov exponent
of 0.413, 0.404, and 0.433, which is very close to the es-
timated result of 0.419. ' We feel that we can safely
conclude that organizing chaotic motion around periodic
orbits seems a reasonable thing to do.
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