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Model for Smectic-A Ordering of Parallel Hard Rods
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A fundamental argument for the smectic-A ordering of parallel hard rods is presented, along with a
mean-field calculation that agrees well with the main features of numerical simulations of this system.
Smectic-4 ordering is attributed to more e%cient packing of rods compared with nematic ordering.
Above a critical volume fraction, the increased entropy per particle in the smectic-A layers more than
compensates for the loss of entropy due to the forming of layers.

PACS numbers: 61.30.8y, 64.70.Md

Systems of hard particles, interacting only through the
excluded-volume eAect, have long served as some of the
most important models for the understanding of funda-
mental structural phase transitions in condensed matter.
The problem of the melting of a hard-sphere crystal, ' for
example, has been a useful testing ground for theory and
computational methods. Likewise, for the understanding
of liquid crystals, the system of hard rods has played a
fundamental role. Onsager made a major contribution
to our understanding of the nematic phase with his sim-
ple theory of the isotropic-to-nematic phase transition
in the system of hard spherocylinders (cylinders capped
with hemispheres). In a recent Letter, Stroobants, Lek-
kerkerker, and Frenkel (SLF) reported convincing evi-
dence for the appearance of smectic-A order in the sys-
tem of perfectly para11e1 hard spherocylinders. Smec-
tic-A order is characterized by a density wave with wave
vector along the rod axis and a liquidlike structure per-
pendicular to the rod axis. In SLF's results, the nemat-
ic to smectic-A transition appears to be continuous and
occurs at a volume fraction well below that necessary for
crystallization. The wavelength of the smectic-A struc-
ture found by SLF is slightly longer than the rod length,
and, well into the region of smectic-A stability, the or-
dering is visible as distinct layers of rods. SLF s results,
coming from Monte Carlo and molecular-dynamics
simulations, serve as experimental data demanding a
theoretical explanation. Stimulated by those results,
Mulder developed a density-functional calculation
which agrees well with SLF's results. In this Letter, we
propose a physical model for the appearance of smectic-
A order in the parallel-hard-rod system, and present a
simp1e mean-field calculation to demonstrate our model,
which is in good agreement with the main features of
SLF's computer simulation. This model can be tested by
further analysis of the SLF numerical data.

The appearance of ordered phases in systems of hard
particles can only be understood via the maximization of
the total entropy, because there is no interaction energy
among the particles. The development of long-range (or
quasi long-range) order intrinsically reduces configu-
rational entropy, but within the ordered structure,
excluded-volume efI'ects among neighboring particles are

reduced. At high density, the increase in the number of
local configurations in an ordered structure outweighs
the decrease of entropy due to the appearance of long-
range order. Onsager's model for the isotropic-to-
nematic transition, for example, argues that translational
entropy can be gained in the parallel ordering of hard
rods because the excluded volume between neighboring
rods is minimized by making them parallel; this
outweighs the loss of orientational entropy. Can one find

an analogous tradeoA to explain the appearance of
smectic-A order? We propose that the appearance of
smectic layers is driven by the concurrent decrease in the
lateral-packing density of the rods within the layers,
which again outweighs the entropy loss involved in the
making of layers.

To understand this argument, one must have a clear
picture of the excluded-volume efT'ects in the nematic
phase. In the nematic phase, neighboring rods overlap
one another by random amounts along their axial direc-
tion. This tends to create voids adjacent to the ends of
each rod, which are accessible only to that rod, and not
to its neighbors. Such configurations contain a large ex-
cluded volume. In the smectic-A phase, with rods distri-
buted in layers, the random lengthwise overlapping of
rods is avoided, and the voids adjacent to the ends of the
rods disappear. Although each rod therefore 1oses some
freedom of motion in the axial direction, the volume
thereby saved is used to reduce the lateral-packing densi-

ty in each layer. This transformation of volume that was
available only to single rods into volume that is available
cooperatively to many neighboring rods is what increases
the entropy of the smectic-A phase over that of the
nematic phase at high density. Another way to eliminate
the voids is to align the rods end-to-end in strings; these
strings then tend to pack together in a two-dimensional
hexagona1 array known as a columnar phase. Indeed, in

their recent computer simulations, SLF have found a
columnar phase for densities somewhat higher than that
of the smectic-A phase.

In this Letter, however, we concentrate on the nematic
to smectic-A phase transition. We have described how

the appearance of smectic-A order reduces the excluded
volume of the nematic phase. It is also useful to look at
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the same argument starting from the perfectly ordered
smectic-A phase. In the limit of perfect smectic-4 order,
the distribution function p(z) of centers of mass of the
rods, as a function of z, the coordinate normal to the
smectic layers, is a series of 5, functions, separated by the
layer spacing a (equal to the rod length, in the limit of
densest packing). Within each layer the rods are packed
together as a two-dimensional liquid. As smectic-A or-
der decreases, the layer spacing increases, and p(z)
broadens in the z direction as rods fluctuate toward the
neighboring layers. Any rod that projects into a neigh-
boring layer excludes lateral-packing area for rods in
that layer as well as in its original layer. Simultaneous-
ly, it creates voids adjacent to its ends as a result of the
partially overlapping configuration it has with the neigh-
boring rods in both layers. At high volume fraction, the
intrusion of rods from neighboring layers significantly
decreases the configurational entropy of each layer;
therefore these fluctuations are opposed and the smec-
tic-4 phase is stabilized. At lower volume fraction, this
eff'ect on lateral-packing entropy is less important, and

p(z) broadens more in the z direction. Eventually, at a
critical volume fraction tl„p(z) becomes uniform along
the z direction, and the structure has become nematic.

The argument as stated in the previous paragraph is
easily expressed quantitatively. There are three obvious
contributions to the entropy changes in going from per-
fect smectic-A toward nematic order: a term describing
directly the changes in long-range order, a term due to
the change of packing density within each layer, and a
term due to the change in axial freedom of motion of
each rod. The first term is easily expressed in terms of
p(z). The second term requires an expression for the 2D
packing density, developed below. The third term is
insignificant compared with the others; it is a single-
particle entropy rather than a cooperative term, and it
changes slowly near the smectic-4 to nematic transition.
In the following computation we ignore it and other
more subtle entropy changes due to correlation eAects.

Given p(z), the rod length I, the rod radius r and di-
ameter d, the layer spacing a, and the overall volume
fraction of rods in the system g, one can calculate the
eAective packing fraction in a layer, g, as

f a/2 pz pz+L
q' =1(grr')'(aq) ' 2„dzp(z)„dz'p(z') 1 —zd'„i dz" p(z")

The effective 2D density is calculated at each z and aver-
aged over one layer period. For simplicity, no correla-
tions between rods are considered in the g calculation.
When we consider a plane at z, only those rods whose
centers lie within a distance L of the plane can exclude
rods with centers at z. The first term above just counts
all the single rods, i.e. , those rods in this 2L-thick layer
which do not have any rods above or below them in the
same layer. The second term accounts for the fact that
rods in the upper half of the layer might lie above rods in
the lower half of the layer. These pairs of overlapping
rods project "clusters" on the plane, having areas rang-
ing from zr to 2zr . A is the mean excluded area of a
cluster, obtained by an averaging over all cluster config-

~a/2
T

z+L
+&„dzp(z) „dz ' p(z ')„dz "p(z ")

urations: 2 =2m fo xdx S(x)/red . S(x) is the excluded
area between a disk due to a single rod and a cluster, in
which x is the separation of the axes of the two overlap-
ping rods. When the fraction of clusters in the plane is
not large, this is a good approximation. For the perfectly
ordered smectic-A phase, Eq. (1) gives q =ria/L If.
we look at the nematic phase as a limiting case of the
smectic-A, with smeared-out layers, Eq. (1) gives q
=2@—1.173' .

Defining the 2D number density p = rt /zr, we
can now calculate the two terms discussed above in the
free energy F of the smectic-4 phase, or of the nematic
phase as a limiting case:

PF=~i d rp(r)[ln(A p(r)) —1]+NS g 8„+2(p )"+ /(n+1).
n=0

(2)

In this expression, P = I/kaT, A =h/(2zmk&T) ', the thermodynamic wavelength, and N and S are the number and
the area of smectic layers in the system, respectively. 8„+2 are the virial coefficients for a 2D system of hard disks.
The first term in F is the long-range-order term, representing the entropy involved in making p(z) nonuniform, i.e., in
the forming of layers. The second term is the excess entropy of a 2D-liquid layer of density p

Using the free-energy expression in Eq. (2), we explored the parameter space for smectic-A structures described by
p(z) equal to the sum of a constant term plus Gaussian peaks of inverse width b and layer spacing a,

p(z) =(rI/err L) [(I —a)+ (aab/Jm) g„exp[ —(z —na) b ]]. (3)

For each value of g, we calculated the diAerence between the free energies of the nematic phase and the lowest-
free-energy smectic-4 structure.

We found the nematic to smectic-4 phase transition at g,
* =0.202, in which g* is g divided by the close-packed
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FIG. 1. The efT'ective 2D packing fraction in the nematic
(n) and smectic-8 (s) phases vs ri* =t)jt)d, in which t),~ is the
close-packed volume fraction of parallel cylinders.

FIG. 2. The amplitudes of the first three Fourier com-
ponents (pl, pz, and p3) of p(z) vs t)*.

volume fraction of parallel rods (0.907). In the parallel
hard-spherocylinder system, SLF found g,*=0.45. Re-
sults from further Monte Carlo simulations in the system
of hard rods without hemispherical caps give g,

* = 0.36.
The 2D packing fraction as a function of g is plotted in

Fig. 1. Near the transition it is much less than the
minimum density for 2D crystallization (about 0.76),
and so our calculation is consistent with fluid layers and
smectic-2 ordering. The transition is second order, in

agreement with SLF's opinion. The first three smectic-4
order parameters p~ 3, being the amplitudes of the first
three Fourier components of p(z), are plotted in Fig. 2.
As expected, near the transition, pl~(r) —rl, )'~, and

p„~p~. The ratio of p~ to p2 is similar to that found by
SLF. The equilibrium layer spacing is 1.28L at the tran-
sition, decreasing linearly to 1.2L at g* =0.4. This
agrees very well with SLF's results, and with the value
a = 1.27L at the transition found in the computer simu-
lation in the capless hard-rod system. The inverse
Gaussian width b increases from 2.3 at the phase transi-
tion to 6.0 at g* =0.4, representing the formation of
well-defined layers, as found by SLF. We calculated the
pressure diAerence between the smectic-2 and nematic
phases. The results, in Fig. 3, compare well with the
data of SLF. Our model does not contain any depen-
dence on the length-to-diameter ratio of the rods. Once
they are anisotropic enough for the interpenetration con-
cept to be meaningful, our argument should apply. SLF
also find almost no dependence of the phase transition on
the length-to-diameter ratio of the rods, for sphero-
cylinders above a minimal length.

The calculation in this paper is presented mainly for
demonstrating our model; for this reason it has been kept
at the simplest level. Fluctuations have a strong efrect
on the nature of the nematic to smectic-4 transition.
Their contribution is not included in our mean-field cal-
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FIG. 3. The scaled pressure difference hP* =Prrr LhP be-
tween the smectic-4 and nematic phases as a function of g

culation. The discrepancy between the value of g,* in

our calculation and the measured value in the computer
simulation may be explained by the simplicity of our g
calculation. Our g expression does not include corre-
lations between rods which probably leads to somewhat
more efficient packing in the nematic phase, and there-
fore a lower g than we have estimated. This lower 2D
density would favor the nematic phase in our free-energy
expression, shifting g, to a higher value. Still, the fact
that this simple calculation predicts many features of the
observed phase transition suggests that it contains the
correct physics.

A real test of our basic idea can be made by our exam-
ining the lateral and end-to-end packing of rods in the
nematic phase in SLF s data, looking for voids adjacent
to the ends of the rods that disappear in the smectic-2
phase. One should be able to determine the eAective
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value of g as a function of density in the nematic
phase, and extrapolate it into the region of smectic-2
stability, where one should find a lower value of g for
the smectic-2 phase.

The appearance of smectic ordering is very sensitive to
the shape of the particles, a fact that is explained by our
model. For example, if one applies our argument to the
system of parallel prolate ellipsoids, smectic ordering is
not favored. Because of their tapered shape, ellipsoids in

the nematic phase, that partially overlap lengthwise,
create only small voids and have a smaller 2D excluded
area than they would in a perfectly ordered smectic-A
phase, in which they interact at their points of maximum
cross section. In contrast, a pair of cylinders have an ex-
cluded area that is independent of the degree of length-
wise overlap. A preliminary calculation of our model for
ellipsoids predicts no stable smectic phase, in agreement
with numerical simulations. This shape sensitivity
probably also explains the lower value of q,

* found in the
simulations for uncapped cylinders, compared with
spherocylinders. We discuss this topic and the relative
stability of smectic-4 and smectic-C order in another
publication.
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