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Proof of the Peierls Instability in One Dimension
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Frohlich and Peierls showed that a one-dimensional system with a half-filled band can lower its
ground-state energy by a dimerization from period 1 to period 2. It was an open question whether or not
this dimerization was exact, i.e., whether additional symmetry breaking would further lower the energy.
We prove that the dimerization is exact for a periodic chain of infinitely massive, harmonically bound
atoms with nearest-neighbor electron hopping matrix elements that vary linearly with the nearest-
neighbor distance.

PACS numbers: 63.10.+a, 05.30.Fk, 71.30.+h

A quarter of a century ago Frolich ' and Peierls
discovered an instability in one-dimensional electron sys-
tems that has come to be called the Peierls instability.
Earlier, Jones used such a mechanism to explain the
high diamagnetism and low conductivity of bismuth. He
also used the mechanism to explain the Hume-Rothery
alloys. Peierls s observation was that this dimerization
always occurs in one dimension.

In a word, Frolich and Peierls note that a long chain
of 2N atoms of total length L and 2N electrons (half-
filled band) will not have a ground state with the "obvi-
ous" periodicity L/2N They show .this by constructing a
trial wave function of period L/N (a dimerized state)
having lower energy than the period I./2N function.
With L/2N as one unit, we have symmetry breaking
from period 1 to period 2.

Given this fact, the question arises whether the energy
can be lowered further by more symmetry breaking, say
to period 4 or perhaps to no periodicity at all. In this pa-
per we prove that at least for one well-known choice of
the Hamiltonian the answer is no. We prove, for all N,
that the dimerized states with the lowest energy are ex-
act ground states and are the only ground states. (The
amount of dimerization is unique, although for small,
odd N the dimerization can vanish, in which case the
ground state is unique and has period 1.) We also show
that the chemical potential is discontinuous at the half-
filled band, as expected. These results were announced
by Lieb. Physical intuition notwithstanding, these re-
sults are not at all obvious, for they are true for all cou-
pling constants and do not require the infinite-N limit.
In fact, as we remark later, they are not true for certain
choices of the Hamiltonian and N.

The precise formulation of the electron system we
shall consider is as follows. Consider a linear chain of
2N atoms (with periodic boundary conditions) and let w;

(i = 1, . . . , 2N) denote the distance from atom i to atom
i+1 (with 2N+1—= 1). If d )0 is the equilibrium dis-
tance and K & 0 is a measure of the stiffness, the distor-
tion energy associated with the w; is taken to be

2'
U ( {wj ) =—tc g (w; —d ) '.

2

Now suppose there are 2N (spin —,
' ) electrons (half-

filled band) which can hop between nearest-neighbor
atoms, with an amplitude t; =t(w;) to hop from atom i
to i+1 and from i+1 to i. In this paper we consider the
ha1f fiilled ba-nd. The function t(w) will be explained
shortly. The ground-state energy of these 2N electrons is

K(jwj) =2 g k, (T),

where k~ ~ X2 ~. . . ~ k2~ are the eigenvalues of the 2N
x 2N matrix T having matrix elements T;;+ ~

= T;+ ~;= t; = t (w; ) and T;~ =0 otherwise.
The total Hamiltonian is H({wj) =K({wj)+U(jwj)

and the problem is to determine the ground-state energy
Eo(2N) =mini„lH(jwj) and the configurations jwj that
attain it.

The function t(w) should be something like ae
but we shall adopt the linear function of Su, SchriefIer,
and Heeger: t (w ) = b —c (w —d ) with b, c )0. (We
emphasize, however, that the w; are treated as dynami-
cal, quantum variables in Ref. 6, whereas here they are
static. )

It is well known that our problem is identical to the
so-called "spin-Peierls" instability for LV interacting
spin- 2 particles. Namely, let

2N

h ( {wj ) —=4 g {S,"S,"+ t +SfSy~ j t (w; ) .

Then the ground-state energy e(jwj) of h({wj) is ob-
tained by a Jordan-Wigner transformation to free fer-
mions and one finds e({wj)=If({wj).

If the definition of t(w) and U({wj) are suitably
changed, an "integrable system" is obtained. Howev-
er, the solution in Ref. 8 covers all electron numbers ex-
cept the half-filled band which is the most interesting
case from our point of view since it is only here that one
might expect only a partial breaking of the symmetry
from period 1 to period 2.

To state our main result we must distinguish two
cases. The minimum can either be taken over all choices
of {w;j, or we can add the restriction that +,22&w; =2Nl,
where l is a constant. We will refer to these two cases as
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with x & 0 and small. One finds that the best dimerized
configuration is w~ =w3=8' wq=w4=0, where 8'is the
solution of 88' + —,

' KR'+ 1 =0. For small v, 8'= —
—,
'

.

Let H(e) denote the total energy of the configuration
w] w3 W, wq = e, w4 =0. Then H (0) =0, H (0)
= —(1 —W) '+ rc. If rc is small, then H" (0) & 0, and
so there is a configuration whose total energy is less than
that of the best dimerized configuration. This example
does not prove anything about large N or large v, but it
does show that one should not try to prove too much. It
is conceivable that for certain t(w) and U([wj) and
large N there could be a phase transition as a function of
rc from period 2 (large rc) to period 4 or no periodicity
(small rc).

We define the chemical potential p(m) to be the ener-

gy required to add the mth electron to the ground state,
i.e. , p(m) =Eo(m) —Eo(m —I). Here Eo(m) is defined
as before except that K is replaced by 2g t~, k~(T) for
even m and by

(m —1)/2
2 g )., (T)+X(~+r)tp(T)

for odd m.
Theorem. —In the variable-length case for all b, c, d,

~, and N, the only configurations that minimize H are

w;=W+( —I)'8 or w;=W —( —I)'6, (3)

with 8' and 6 being uniquely determined by b, c, d, ~,
and N. Moreover, there is a gap, i.e., there is a positive
constant | which depends on b, c, d, and v, but not on N,
such that for all N, p(2N+ I) —p(2N) ~ e. In the
fixed-length case the same conclusions hold provided that
b, c, d, and ~satisfy

rc[b —c(I —d)] ~ c~. (4)

Remark: Kivelson and Heim' argued that 6& 0 for
all even N, while 6 can be zero for N odd. However, 6 is
always positive for large enough N. There is no difficulty
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the variable- and fixed-length cases, respectively. For
the variable-length case, which is the physical case, our
results hold for all values of the parameters N, rc, b, c,
and d. In the fixed-length case, N is arbitrary, but we
require a restriction on the other parameters. The
fixed-length constraint may be relevant for certain sta-
tistical mechanical systems in which one conventionally
fixes the total "volume. "

One might expect that with another t(w) or another
U([wj), a similar theorem would hold, at least when rc is

large enough. We were unable to prove such a theorem,
and wish to point out that some restriction on the param-
eters is essential in general, e.g. , ~ being large. A simple
example of N=2 for which the ground state does not
have period 2 is to let t(w) =1 —w and

4

U([wj ) = g z rcw; +4w;4

proving these statements rigorously.
Proof: Since T is unitarily equivalent to —T [the uni-

tary operator is ( —I)'6j], we see that the sum in Eq.
(2) is identical to the sum of the negative eigenvalues of
T Thi. s implies that K =Tr

~
T

~
since TrT=O. From

now on we shall use [t;j to specify the positions of the
atoms rather than [w;j. Hence,

2N
H= —gg (t; —b) —Tr

~
T ~,2 '

]

H ~ —,
' g2N(y —2bx+b ) —Tr(2y +zt1) 't . (7)

Let s; =x —t; Then .y =x +g, s; /2N, so y ~ x
With use of Cauchy's inequality,

z =x +ps;s;+r/2N» x —gs; /2N=2x —
y . (8)

We now consider two cases depending on whether this
lower bound on z is positive or negative.

Case r' (2x —y ~0).—Consider Tr(2y +zA)' as
function of z. This function is clearly concave. Since T
is unitarily equivalent to —T, it is also even in z. Thus,
it is a decreasing function of

~
z ~, so that in (7) we can

replace z by 2x —J . The resulting inequality is an
equality for the dimerized configuration with t; =x
+ ( —1) '(y —x ) 't . Furthermore, since g, t; =2Nx
=g, t;, the total length of the configuration correspond-
ing to [t;j is the same as the total length of the
configuration corresponding to [t;j. Thus, we have
shown that for any choice of [t;j satisfying 2x —y ~ 0,
there is a configuration satisfying (3), with the same to-
tal length, whose energy is at least as low. This energy is

H =gN(y —2bx+ b ~)

—Tr[2y 2+ (2x 2
y 2) z]1/2 (9)

Case 2 (2x —y & 0).—Since Tr(2y z+ z n ) 'tz is de-

with g =rc/c'.
Let 8, be the unitary operator associated with transla-

tion by k sites. Then the concavity of the square-root
function implies that

Tr
~
T

~

=Tr(T ) ' ~ Tr((T )) ' '

where (T )=Jr,eqT er, '/2N. It is important to note
here that for a configuration satisfying (3), Qk T~r, '

= T, and so the above inequality is an equality.
The nonzero matrix elements of T are (T );;=t;

+t; r and (T );;+q=(T );+z; =t;t;~r. Thus, the non-
zero matrix elements of (T ) are ((T )), ; =2y and
((T ));;+q=((T ));+q; =z, where y =g,~+, t; /2N and
z =g, =r t; t;+r/2N. . Let 0 be the matrix whose only
nonzero elements are tl;;+z = 0;+z; =1. Then (T )
=2y +zA.

The distortion energy is trivially expressed in terms of
y and x =g, ~~t;/2N. Combining all our results we have
shown
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creasing in Iz I, we can bound it from above by replac-
ing z with 0. This yields

H/2N ) —,
' g(y —2bx+b ) —J2y. (10)

In the variable-length case we use x &y /2 to obtain

H/2N & 2 g(y —J2by+b ) —J2y.

A little calculation shows that this lower bound on H is
attained by the dimerized configuration t; which alter-
nates between 0 and J2y.

The total length of the configuration corresponding to
(t;} need not be the same as that corresponding to ft;},
and so we need a separate argument for the fixed-length
case. Fixing the length of the chain to be 2Nl is

equivalent to fixing x to be b —c(l —d). Recalling that

g = x/c, the restriction (4) is equivalent to gx ) 1. This
inequality and y & J2x implies 2 gy

—J2y & gx —2x.
From (10) we then obtain

H/2N & gx gbx+ —,
'

gb——2x.

For the dimerized configuration t; which alternates be-
tween 0 and 2x this lower bound is attained. Further-
more, the configuration corresponding to jt;} has the
same total length as the configuration corresponding to
4;}. This analysis shows that for any configuration be-
longing to case 2, there is a configuration belonging to
case 1 whose energy is lower. Hence, under the hy-
potheses of the theorem the minimizing configurations
always belong to case 1.

We have shown that for any configuration with energy
E there is a configuration satisfying (3) whose energy is

at least as low as E. Thus H attains its minimum at such
a configuration. It remains to be shown that H attains
its minimum only at such configurations, that W and 6
are unqiue, and that there is a gap. The following lem-
ma, which is an improvement of inequality (6), will be
used.

Lemma As before, let (T.—) be the average of T
over translations. Then

Tr(T') ' '

(Tr((T))' —
—, T

I

Tr(T —(T ))'

Proof: By replacing T by T/ T, we may assume

I

T =1. We claim that the function 2 — TrA 't

+ —,
' TrA is concave on the set of operators A with

0~ A ~ 1. To prove the claim, it suf5ces to show that
f(x) =x't + —, x is concave on [O, ll, which is trivial.
The argument is now the same as in (6) with the addi-
tional remark that Tr(T —(T )) =Tr(T —(T ) ).
Q.E.D.

By using the lemma in place of inequality (6), we see
that for any configuration at which H attains its
minimum we have Tr(T —(T )) =0. This implies that
T =(T ), which implies that the configuration satisfies
(3).

We must show that 8' and 6 are unique. For such
configurations H equals the right-hand side of (9), which
we think of as a function of X=x and Y=y . It is

strictly jointly convex in X, Y, and so has a unique
minimum over the convex region 0 (X(Y (variable-
length case) and over the region Y) X, X fixed (fixed-
length case). There are two configurations correspond-
ing to this unique minimum unless x =y, in which case
there is only one configuration and 6'=0.

To complete the proof of the theorem we must show
that there is a gap. For a configuration satisfying (3) the
spectrum of T may be explicitly computed. One finds
that it has a gap between the (2N)th and (2N+1)th ei-
genvalues. However, this does not by itself imply that
the system has a gap because the configuration that min-
imizes H for 2N —

1 or 2N+ 1 electrons need not be the
configuration that minimizes H for 2N electrons.

Recall that Ep(21V —I ), Ep(2N), and Ep(2N+ 1) are
the ground-state energies with 2N —1, 2N, and 2N+1
electrons, respectively. Let 4; }, it;}, and jt;+} be
configurations which attain these minima. Let T, T,
and T+ be the associated T's and k;, X;, and X;+ their
eigen values. Then

p(2N+ I ) —p(2N) =5++8 +kjv+1 —X~,

where

(14)

The energy E for 2N electrons with the atoms in con-
figuration ft;+} is at least as large as the energy for 2N
electrons with the atoms in configuration jt;}, so that 4+
is nonnegative. The same reasoning shows that 6 is
also nonnegative. Recall that T is unitarily equivalent to
—T. This implies that the spectrum of T is symmetric
about 0. Hence, X~+~) 0 and X~ (0. Thus, Eq. (13)
implies that p(2N+ 1) —p(2N) )4++k~+ ~.

We now consider three cases: (i)

and (iii)

((7+) )7
I

)(g ) /4

By the triangle inequality, at least one of these cases
must hold. We claim that k&+i is bounded away from
zero, uniformly in N, for the following reason. When N
is even or when N is odd and N ~ some No, we have
6'& 0. Also, 6 does not go to zero as N ~. This im-
plies the claim in the two cases just cited. If N is odd
and N (No then X~ =~ & 0 since 0 is not an eigenvalue
of T in this case, even if 6=0. (It is precisely for this
reason that 8 can be zero in the odd-N case. ) Since Np
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is finite, this implies a positive lower bound to k~~] when

N & No, which proves the claim.
In case (i), note that (Xtv+~) and (Xtv+~) are the

smallest eigenvalues of T and (T+) . Then,

(T')'=T'+ HT')' —T'] ~ T' —~~(T')' —T'~~

~ T' —(&tv+ t ) '/2 ~ (&tv+ t ) '/2,

and thus (XJv+t) ~ (X~+~) /2 which implies there is a

gap. In case (ii) we bound 6+ as before except that we

use the lemma in place of (6). This yields

n+ ~
~

T+ 'Tr[(T+)' —((T+)')]'
Combining this with (ii), and the fact that TrA

A~ for Hermitean A, shows that A+ is bounded
away from zero. (The norm of T+ is easily bounded
from above. )

To handle case (iii) consider the dimerized config-
uration with the same y and x as ((T+) ). Call these
parameters y+, x+ land z+ =2(x+) —(y+) ]. Since

~ 2, the triangle inequality and (iii) imply
y' —(y+) '

~
+

~
z —z+

~

~ (X~+ () '/8. Since XJv+, is

bounded away from zero, at least one of ~y
—y+

~
and

~x —x+
~

must be bounded away from zero. A simple
calculation using (9) then shows that 6+ =O(N), which

more than suftices.
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