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Space-Potential and Density Fluctuations in the ISX-B Tokamak
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The fluctuating plasma potential and electron density have been measured in Ohmic- and neutral-
beam-heated tokamak discharges. Radial profiles are presented in the outer two-thirds of the plasma,
and the E&8 transport calculated. The transport is found to be an order of magnitude larger for beam-
driven plasmas. Measurements indicate that the linearized Boltzmann equation is satisfied in the interi-
or, but not at the plasma edge.

PACS numbers: 52.55.I.a, 52.3S.Qz, 52.3S.Ra, 52.70.Nc
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It is widely believed that the broad-band fluctuations
observed in tokamak discharges are the cause of anoma-
lously large ())neoclassical) energy and particle trans-
port near the plasma edge. ' A detailed comparison with
the predictions of various theories, such as those based
on drift-wave instabilities, resistive ballooning modes,
etc. , has lacked a direct measurement of the interior
plasma-potential fluctuations. This paper describes such
measurements, which have been obtained with a heavy-
ion beam probe on the ISX-B tokamak.

The impurity studies experiment-8 (ISX-8) tokamak
has major radius R =93 crn, average minor radius a =22
cm, and is well documented. The results presented here
are for toroidal field BT =12 kG, plasma current J~ =130
kA, and average plasma density n, =3 & 10' cm
Measurements are obtained for Ohmic heating only and
for 800 kW of H neutral beam injection (NBI) in the
direction of the plasma current (coinjection). The work-

ing gas is deuterium, the plasma elongation is K=1.18,
and a beryllium rail limiter locates the top plasma edge
at 24 cm.

We have recently described the ISX-B heavy-ion
beam probe. Here we inject =25 pA of Cs+' at 125
keV, and detect Cs+ secondaries in the analyzer. Mea-
surements are highly localized in space, with a sample
volume =0.15 cm . The analog measurement band-
width is 500 kHz and the spatial uncertainty is 1 cm.
Data are obtained for 1.5-2 ms at each measurement lo-
cation in a single shot. The analyzer contains three en-
trance slits and associated detectors, allowing simultane-
ous measurements at three spatial points which are po-
loidally separated =2 cm in the plasma interior.

The energy of the Cs+ secondary ions gives the
sample-volume plasma potential, p. The secondary ion
current, i,„,gives the relative electron-density fluctua-
tion

if the spatial correlation length of the turbulence is much
less than the ion-beam path length to and from the sam-
ple volume, and if the Cs+' ionization cross section is
not temperature dependent. Correlation lengths are ex-
perimentally found to be a few centimeters, satisfying
the first restriction. The second is satisfied for T, & 50
eV, corresponding to p & 0.95, where p is the flux-
surface radius normalized to the limiter.

Both potential and density measurements must be
corrected for detector noise. The signal-to-noise ratio
varies from 1 to 15, with smaller values for interior mea-
surements because of attenuation of the Cs-ion beam.
Extensive tests have shown the background noise to be
uncorrelated with the localized measurement, and the
noise is rms subtracted during data processing. In addi-
tion, density fluctuations with wave number k compara-
ble to the beam-probe sample length (2tr/k I ) are mea-
sured as potential fluctuations. Modeling is difficult be-
cause of the complex geometry and dependency on the
fluctuation spectra. Worst-case calculations indicate
that the error in the measured p is less than 50%.

Data from each radial measurement location are di-
vided into five or more nonoverlapping 0.256-ms (256
data-point) intervals. Each interval is Fourier analyzed,
and the results ensemble averaged. Typical spectra,
shown in Fig. 1, are similar for all radial positions for
both Ohmic heating and NBI. The rms fluctuation levels
presented here are integrated from 50 to 500 kHz, which
avoids MHD oscillations (f( 50 kHz) and contains
most of the power from the microscopic plasma tur-
bulence.

For both NBI and Ohmic heating only, n/n is =1% in
the plasma interior, as shown in Fig. 2. Near the plasma
edge, fluctuation levels are much larger, and also beam
heating increases the fluctuation level about a factor of 2
above that for Ohmic heating only. For Ohmic dis-
charges, n/n reaches a peak level of =7% at p= 1. For
neutral-beam injection n/n =14% at the limiter. These
data are consistent with scattering measurements on oth-
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FIG. l. Typical autopower spectra of n/n and p.

er tokamaks and probe measurements in ISX-B.
Drift-wave, or density-gradient-driven, turbulence is

expected to saturate at the "mixing-length level" n/n

—I/(k~)L„—(3-10)p,/L„, where k~ is the mean wave
number, L„=—[d(inn)/dr] ' is the density-gradient
scale length, and p, =p;(T,/T;)' is the ion gyroradius

p; evaluated at the electron temperature. ' The n and T,
profiles are measured by Thomson scattering and edge
Langmuir probes, with central and edge values given
in Table I. Results indicate n/n —p, /L„ for p &0.8, as
shown in Fig. 2(c). At the plasma edge the increase in

n/n is not followed by p, /L„
At all radial positions p is larger for beam-injected

plasmas, as shown in Fig. 3. For p (0.8, rms levels are
/=2-4 V for Ohmic heating and 5-10 V for beam in-
jection. Edge amplitudes are p = 12 V rms for Ohmic
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FIG. 2. Radial distribution of the relative density fiuctua-
tion level n/n, with (a) Ohmic heating only and (b) 800-kW
neutral-beam coinjection; (c) the mixing-length limit p, /L„.

FIG. 3. Radial distribution of the space-potential fluctua-
tion level for (a) Ohmic heating and (b) neutral-beam injec-
tion.
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magnitude larger for neutral-beam —driven plasmas than
for Ohmic heating only. Our data indicate low-ampli-
tude turbulence in the plasma interior, with the linear-
ized Boltzmann equation satisfied, and a much higher
turbulence level, which is not likely drift-wave tur-
bulence, at the plasma edge. That the shape of k(to),
p(to), and n/n(co) does not change with NBI suggests
that the basic nature of the turbulence does not change,
merely the amplitude. Simple calculations indicate that
the fluctuation-induced power loss is significant.
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FIG. 6. Radial (E&&B)-drive nparticle flux (OH=Ohmic
heating).

NBI. With the assumption that I Fxa(p= 1) is uniform
over the entire plasma surface S, the convected E&B
power loss (SkT, I S/2) is =3.5 kW for Ohmic heating
and =65 kW for beam injection.

In summary, we have directly measured the fluctuat-
ing plasma density and potential in the outer two-thirds
of the ISX-B plasma. The ExB transport is an order of
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