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Cooperative Quantum Jumps with Two Atoms
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Quantum jumps in the fluorescence from two three-level atoms may display cooperative effects, such
as unusual intensity levels and transitions from a state with both atoms radiating directly to darkness.
However, to see these experimentally, the atoms have to be well within a wavelength of light.

PACS numbers: 42.50.Fx, 32.80.Pj, 42.50.BS

Atomic spectroscopy has reached the ultimate sensi-
tivity with the progress in ion trapping and laser cooling
techniques, in that one ion can be isolated and subjected
to continuous observation for a period of hours. This
state of aAairs naturally promotes studies of the basic
light-matter interactions, such as recent "quantum
jump" ' and photon antibunching observations. By the
same token it is possible to experiment on samples with a
known small number of ions close enough to one another
that each one senses the field radiated by the others.
Cooperative effects may have to be considered, such as
few-atom precursors of superradiance as well as
modified photon statistics and resonance fluorescence
spectrum. It is also conceivable that collective interac-
tions of the ions with light affect the quantum jumps. In
fact, an anomalously high probability for quantum jumps
involving simultaneously more than one ion in two- and
three-ion clouds has been reported in one experiment,
whereas in another such correlations were not found.

In this Letter we outline a theory for quantum jumps
in the fluorescence from two atoms. Cooperative effects
turn out to be dramatic if the phase relations between
the two atoms are preserved over the time scale of the
quantum jumps. However, in current practice this is a
prohibitive requirement, as it presupposes that the dis-
tance between the atoms is orders of magnitude smaller
than the wavelength.

Let us first recall the quantum jumps in a single
three-level atom, say, one with the level scheme of Fig. 1.
A resonant laser drives the transition 0 2 at the Rabi
frequency Q, and the spontaneous transitions 2 0 take
place at the rate y, . The transitions to and from the
metastable state 1 at the very low rates yb and y, are ex-
clusively spontaneous. According to Dehmelt, ' the
atom scatters a continuous stream of photons while it
makes rapid transitions between the states 0 and 2,
whereas the fluorescence suddenly ceases when the atom
jumps to the "shelving" state 1 and equally suddenly
reappears upon a new quantum jump from 1 to 0. Cook

and Kimble" interpreted the rate equations of the atom
as giving also the probabilities per unit time for the
jumps between the light and dark states of the fluores-
cence. Subsequent photon-statistics analyses' have de-
duced the quantum jumps in the fluorescence from ab
initio arguments instead of assuming them at the outset,
and confirmed the results of the rate equations. Experi-
ments' have finally materialized in substantial agree-
ment with theory.

Here we again resort to a rate-equation treatment,
confident that a more rigorous analysis can be given as in
Ref. 12 if desired.

Now take two atoms like that in Fig. 1, labeled "left"
and "right. " Because we focus on the limit of very high
Rabi frequency, we employ for both atoms instead of the
bare states I0) and

I
2) their laser-dressed'3 counter-

parts I
+') '=2 't (IO) '+'

I 2) '). The state space of
the combined two-atom system is spanned by the dyadic
products I i ) '

I j)", with i,j = 1, +, or —.However, with
another change of basis we go over to the atom-
symmetrized and -antisymmetrized linear combinations

Yb

FIG. 1. Notation of one of the three-level atoms. A reso-
nant external field drives the transition IO& I 2& at the large
Rabi frequency Q. The spontaneous decay rates are

I
2&—

I o&, y. ; I2&—
I l&, yb, I l&—Io&, y. .
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instead, defined respectively as

lij)'=2 '"(I i&'
I
j&'+

I
j)' li&')

Iij&'=2 '"(li&'
I
j&' —

I
j&' li&').

Iij)" are stationary (quasi)energy eigenstates of the
system consisting of the atoms and the laser held;
I
++)' and

I

——)' have the energies ~ h tt, I
+1)'

and
I

+1)' can be assigned the energy —,
'

h 11, and so
forth. In this representation, spontaneous emission is the
sole cause of transitions. For instance, the piece in the
master equation of the atoms which governs the radiative
transitions 2 1 reads '

p= . + —,
' [yb+ yb(R)][(of+ —o'f )p(o+, —o" 1) —(o+1 —o",)(of+ —of )p+H. c.]

+ 8 [yb yb (R ) ] [(o1+ ol —)p(o+ i
—o'—i ) —(o+ i

—o'—
~
) (o~'+ —o ~

—)p +H.c.] +

Here o,~'= Ii)''(j
I

+ Ii)'"(j
I are the symmetrized and

antisymmetrized transition operators between Ii) and

I j), and yb(R) entails the modifications of spontaneous
emission because of cooperative effects of the atoms at
the distance R. For our discussion it suffices to recognize
that yb(R) yb quadratically as R 0, that yb(R)

0 as R ~, and that the wavelength of the transi-
tion provides the scale of variation of yb(R) with R.
Similar collective emission rates can be defined for the
other two spontaneous emission transitions called a and
C.

The density operator p in principle has 81 independent
real components. Fortunately, in the particular atomic
basis we have chosen, all off-diagonal elements can be
shown to tend to zero in the limit 6 ~. For high in-

tensities of the driving field, the nine occupation proba-
bilities of the states and a nine-component rate equation
suffice to describe the physics of the two atoms. More-
over, Eq (1) de. monstrates that the six rates y, +' y, (R),
yb+ yb(R), and y, ~ y, (R) determine the evolution
time scales.

Below we assume that the time scale corresponding to

y, + y, (R), essentially the photon emission rate in the
strong transitions 2 0, is faster than the resolution of
the experiment. The same may or may not apply to

y, —y, (R), but the rest of the time scales are always
taken to be much slower than y, + y (R). The fast de-

cay rates divide the nine states into groups such that
within each group an equilibrium is reached in a time too
short to be resolved, whereas the transitions between the
groups are slow. We thus adopt the following approach
to quantum jumps in the scattered light. (i) At every in-

stant of time the atom system is assumed to be in one of
the state blocks, sending out a light intensity as appropri-
ate for the adiabatic equilibrium within that group. (ii)
The atoms jump between the groups, and hence between
states of different fluorescent intensity, with probabilities
per unit time equal to the calculated transition rates be-
tween the groups.

As the first illustration we consider the case when

y, + y, (R) and y, —y, (R) are both regarded as fast de-

cay rates. There are three distinct groups of atomic

P2 = —ybP2+ y.P],

Pl = —( 2 yb+ y, )»+ ybi'2+2y, i'O.

Po = —2y, PO+ —,
'

ybP

(2a)

(2b)

Equations (2) are valid in particular when the atoms
are infinitely far apart, R ~, and y, (R) =p. Then
both atoms jump independently between their "on" and
"off" states at the rates y, and —,

' yb., the fluorescence lev-
els 2, 1, and 0 correspond to the possible number of the
"on" atoms; and equal populations within each group re-
sult as the one-atom states I

+ )"have the same popu-
lation and the exchange symmetry must be inconsequen-
tial. The collective effects do not show at all; especially
the dependence on y, (R), yb(R), and y, (R) is absent.
We emphasize that this is the outcome of a quantum-
jump experiment whenever y, —y, (R) is a rate too fast
to be resolved, even if the atoms are close to one another.
Other cooperative effects may or may not be ob-
served, fairly independently of the quantum jumps.

%'e next take up the more general case when y,—y, (R) is also treated as a slow rate. There are five
different state groups,

jl++)'
I

——)' I+ —)'] jl+1)'
I

—1)'/

jl+», I-»], jl+-&], jl»&]

The adiabatic equilibrium populations within each group
are again equal, and the respective group intensities are
—':1:1:0:0. Although some of the fluorescence states
share the same intensity, they have to be considered sep-
arately since the transition rates to and from them are
different.

!
states: jl + + )',

I

——&',
I
+ —)"] jl ] +)'

I
1
—)' ']

and jl »)']. In the fast equilibrium the populations of
the states within each group are equal. The total fluores-
cence intensities from the groups are, respectively, 2, 1,
and 0 times the fluorescence intensity of one atom in the
"on" state of its quantum jump. The equations for the
probabilities of the fluorescence levels read
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We abbreviate y, y, (R) by y,—,etc. , and use an obvious notation for the fluorescence states. All nonzero transi-
tion rates are specified by

0' 1', y,+; 0' 1', y, ; (3a)

(3b)

(3c)

(3d)

Difference rates with minus sign as the superscript
govern the crossing between symmetric and antisym-
metric two-atom configurations. Direct transitions be-
tween

(-', )'=II++)',
i

——), i+ —)'}

and O' = I
~
+ —)'}, the superradiant and nonradiating

states already discussed by Dicke, are the qualitatively
new feature of this case. In the experiments they would
emerge as double quantum jumps where both atoms turn
on and oN' simultaneously.

Equations (2) can be derived from the rates (3) by our
letting y, —y, (R) ~, whence the symmetric and an-
tisymmetric states are mixed faster than can be resolved.
The fluorescence states we have denoted by ( —', ) ' and 0'
then shrink into one, as do the states 1' and 1'. Con-
versely, this limit also hints at an explanation of the
surprising intensity of the state ( —', )'. For two indepen-
dent atoms the intensity of the "both atoms on" state is 2
and the states

~

++)',
~

——)',
~
+ —)', and

~
+ —)'

are equally populated. Now, the same must apply to the
averages over the time scale set by y, —y, (R), even if
the states ( —', )' and 0' are resolved. The atom spends
one-fourth of the time in the nonradiating state

~
+ —)',

and to produce the average fluorescence 2 it makes up
for the dark time by emitting at —, while it is in the ac-
tive atomic state triplet ( 3 )'.

In the limit when the atoms are very close to one
another, ideally y, —y, (R) =0, crossing between sym-
metric and antisymmetric configurations does not occur.
Instead, the atoms either dwell in the fluorescence state
triplet j( —, )', 1',0'} displaying quantum jumps at the in-

tensities —', :1:0 (with no double jumps), or execute two-
state quantum jumps in 11',0'}. A very small nonzero
value of y, —y, (R) manifests itself in random jumps be-
tween these two quantum-jump schemes.

Unfortunately, our nontrivial predictions may be hard
to verify experimentally. In the ion-trap experiments the
collection e%ciency of light is typically g = 10
Several photons must be detected in order to identify a
state with nonzero fluorescence, and so its lifetime must
be much larger than g

' times the interval between the
emitted photons; i e. , y, —y, (R) ((r)[y, + y, (R)]. This
requires that the distance between the atoms be at most
of the order of g' =10 wavelengths.

(3e)

Our discussion applies directly only to our specific
model with all its assumptions, such as the very high
light intensity. Nonetheless, we conjecture more gen-
erally that, to observe collective quantum jumps, the
crossing of the two-atom system between antisymmetric
and symmetric configurations must be slower than the
experimental time resolution for quantum jumps. More
work is needed to clarify the nature of the double and
triple jumps reported in Ref. 7. In fact, ion traps may be
inherently unsuitable for studies of collective quantum

jumps because the Coulomb forces push the ions apart.
Neutral-atom traps' do not suffer from the Coulomb
repulsion; so in the long run they may be better suited
for this purpose.

In summary, cooperative interactions of two nearby
atoms with light may drastically shape the quantum
jumps. Our predictions include intensity ratios different
from the 2:1:0scheme of two independent atoms, double
jumps where both atoms appear to turn on or off' simul-
taneously, and long-term alternations between different
quantum-jump patterns. It appears, though, that it is
exceedingly difficult to see collective quantum jumps ex-
perimentally.
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