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Calculations using nonlocal density-functional theory show that the total energies of atoms in states
characterized by partially filled degenerate subshells are substantially lower when the charge density is
not spherically averaged. This is in contrast to the case with local density theory in which spherical and
nonspherical treatments of atoms give essentially identical energies. A cooperative efI'ect of nonlocality
in the exchange-correlation functional and nonsphericity in the charge density lowers the atomic total
energies and greatly improves the calculated binding energies of B2, C2, Oz, and F2.

PACS numbers: 31.20.Di, 31.15.+q, 71.45.Nt

Calculations of atomic total energies using the local
spin-density approximation (LSDA) are usually carried
out with the further approximation of spherically averag-
ing the electron density in the open shell. For atoms
with partially filled, degenerate sublevels (p or d), a
spherical charge density is enforced by use of fractional
population numbers.

There are two reasons for imposition of spherical
averaging in atomic calculations. First, when the spheri-
cal approximation is used, the radial and angular equa-
tions are separable. Solutions to the radial differential
equation can be obtained by direct one-dimensional nu-
merical integration. Without variable separation, the ra-
dial functions must be obtained variationally by use of a
basis set. Second, Janak and Williams' have shown that
within the LSDA the nonspherical corrections are quite
small in spin-polarized calculations for first-row atoms
and can be accurately calculated by first-order perturba-
tion theory for cases where the corrections are significant
(transition-metal atoms and nonspin polarized treat-
ments). For total energy calculations there is thus no
strong motivation for our dispensing with the approxima-
tion of spherical symmetry.

Variational considerations lead one to expect that re-
moving the constraint of spherical symmetry would lower
the atomic energy. In fact, however, most atoms studied
by Janak and Williams showed slightly higher energies
when the nonspherical charge densities were used. This
was attributed to incomplete cancellation of the self-
interaction, a problem with local density functionals
which arises because of the approximate treatment of ex-
change. Thus calculations for nonspherical atoms in lo-
cal density theory have revealed the inadequacy of
current descriptions of self-interaction in the LSDA, but
have not yielded better atomic reference energies.

A local exchange-correlation energy density and po-
tential at a point in space depends only on the charge
density at that point. In the past few years advances
have been made in the development of nonlocal density
functionals. A nonlocal exchange-correlation energy
density and potential depend not only on the charge den-
sity at the point of interest, but also on the gradient of
the charge density at that point. The nonlocal extension
of density-functional theory improves the predicted
correlation energies, one-electron energies, and binding
energies. '

Improved descriptions of the energetics of atoms are
important for more than simply the achievement of a
better understanding of the stability and structure of
atoms, for the atomic energies serve as references for the
calculation of the binding energies of molecules and
solids. In this Letter, we report results from nonlocal
calculations which show that the total energies of non-
spherical atoms are quite systematically lower than those
for spherical atoms, a result which leads to appreciably
improved molecular binding energies. Specifically, we
present results of calculations of the binding energies of
all first-row dimers in which the component atoms have
open p shells: B2, C2, 02, and F2.

The nonspherical calculations were performed with the
augmented- Gaussian-basis (AGB) method of Painter
and Averill. '' Atomic-orbital solutions in this method
are determined variationally as linear combinations of
Gaussian-basis functions. Electron-electron matrix ele-
ments are evaluated semianalytically with use of a com-
bination of Gaussian integral algorithms and numerical
sampling.

We present results for two types of nonlocal func-
tionals —one developed by Langreth and Mehl (LM) 47

and the other, the generalized gradient approximation
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(GGA), by Perdew and Yue. ' In both cases, the total
exchange energy can be written in the form

E„[n]= —0.73856J d rn ~ (r)F(s), (1)

where n =charge density, s =!Vn! /2(3rr )'~ n ~, and
F(s) =(I+as'+bs'+cs')

For the LM functional, a =(1+23.140f )(0.0864),
b =c =0, and m = I, where f is the adjustable wave-
vector cutoA' parameter, which has the suggested range
of 0.13-0.17. For the Perdew GGA functional, a
=1.2975, b =14.0, c =0.2, and m = —,', .

The correlation energy is separated into a local term
where

plus a nonlocal correction. The LM nonlocal correction
to the correlation energy is, in Hartree atomic units,

ELM[ ]

=0.004287J"d r!Vn! [e +9f ]/n

F =1 745f. ! Vn! /n ~, f=wave-vector cutoA' parameter
(0.13-0.17), and the Perdew nonlocal correlation energy
term is given by

f
E, [n] =J d re ~C(n)! Vn! /n ~, (3)

&=1 745f[C. ( )/C(n)]! Vn!/n, C(n) =0.001667+(0.002568+ar, +pr, )/(I+ yr„+Sr, +10 pr, ),

n =(4rrr, /3) ', a =0.023266, P =7.389 x 10, y=8. 723, 6=0.472, f=0.11.

In the calculations with use of the LM nonlocal func-
tional, we used the Vosko-Wilk-Nusair (VWN) ' fit to
the random-phase approximation for the local correla-
tion. With the GGA functional of Perdew, we used two
parametrizations of the Ceperly-Alder' results for the
local correlation function: the VWN parametrization'
(denoted in the tables as GGA-VWN) and that of Per-
dew and Zunger' (denoted in the tables as GGA-PZ).
Spin-dependent forms of Eqs. (2) and (3) and the re-
lated expressions for the nonlocal exchange-correlation
potential were used in the calculations reported here.

Self-consistent spin-polarized atomic total energies

!
were obtained for the four open p-shell atoms in the first
row: boron, carbon, oxygen, and fluorine. Spherical and
nonspherical results with use of the four previously de-
scribed functionals are summarized in Table I. The
VWN exchange-correlation functional was used for the
local density calculations, and nonlocal calculations were
carried out (again for both nonspherical and spherical
models) with the LM functional and the GGA of Per-
dew. The electron configurations in the open-shell
scheme were p,' for B, pxpy' for C, p~py'p, for 0, and

pxpypz for F.2 2 1

TABLE I. EA'ect of the removal of the spherical approximation on the atomic energies of B,
C, 0, and F with use of four density functionals. (NS =nonspherical, S =spherical; energies in

Hartrees, except for energy diA'erences, as noted. )

Atom

B(NS)
B(S)
Diff (eV)

C(NS)
C(S)
Diff (eV)
O(NS)
O(S)
Diff (eV)

F(Ns)
F(s)
DiA (eV)

GGA-VWN'

—24.687 28
—24.681 01

0.171

—37.895 61
—37.891 22

0.119
—75.158 75
—75.146 22

0.341

—99.847 00
—99.837 93

0.247

GOA-PZb

—24.685 07
—24.679 10

0.162

—37.891 03
—37.886 89

0. 113
—75. 151 75
—75. 13977

0.326

—99.840 66
—99.832 16

0.231

LM'

—24.573 84
—24.568 66

0. 141

—37.741 99
—37.739 59

0.065
—74.905 18
—74.894 79

0.283

—99.536 58
—99.531 05

0.150

V W N (loca 1)

—24.354 46
—24.352 77

0.046

—37.467 98
—37.468 59
—0.001

—74.525 54
—74.523 30

0.061
—99.109 33
—99.11079
—0.040

'Perdew's GGA local plus nonlocal exchange (Ref. 5) and nonlocal correlation (Ref. 6). The local corre-
lation is the parametrization by Vosko, Wilk, and Nusair of the Ceperly-Alder results (Ref. 12).

Same exchange and nonlocal correlation as in GGA-VWN, but using Perdew-Zunger parametrization
(Ref. 15) for local correlation.

'Langreth-Mehl functional (Refs. 4 and 7) for nonlocal exchange and correlation, and the Vosko, Wilk,
and Nusair (Ref. 12) parametrization of the exchange and correlation from the random-phase approxima-
tion.

Vosko, Wilk, and Nusair parametrization of the Ceperly-Alder results (Ref. 12).
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TABLE II. Binding energies (in electronvolts) of first-row dimers using spherical and non-
spherical atom energies. The binding energy is calculated from the minimum of the state ex-
perimentally observed to be the ground state (e.g. , 'Zs+ and 'Zs for C2 and B2, respectively).

Expt.
Nonspherical

GGA-VWN' LMb VWN
Spherical

GGA-VWN LM VWN

B2

C2
02
F2

2.9
6.2
5.2
1.65

3.22
6.18
5.94
2. 19

3.38
6. 18
6.30
2.39

3 ~ 84
7 ~ 22
7.49
3.39

3.56
6.42
6.62
2.68

3.66
6.31
6.87
2.69

3.93
7.19
7.54
3.32

'See Table I for meaning of exchange-correlation abbreviations.
bSee Ref. 9. The values in this column are in good agreement with the results in Ref. 9, which were cal-

culated without the effect of nonlocality on the atomic and molecular densities.

Oxygen shows the largest nonspherical effect with use
of the local VWN calculation with the total energy in

the nonspherical treatment lying 0.061 eV lower than the
result in the spherical approximation. Likewise, the non-
spherical boron-atom energy is lower than that obtained
in the spherical central-field model, while both carbon
and fluorine atomic energies were slightly lower in the
approximation of spherical symmetry. The results are in

good quantitative agreement with results of Janak and
Williams, who treated B and C with an unspecified local
functional.

When we use a nonlocal exchange-correlation func-
tional, the atomic energies of all four atoms are
significantly lowered by including the nonspherical
corrections. The largest difference is again observed in

the oxygen atom in which the Perdew functional gives an
energy lowering of about 0.34 eV for the nonspherical
atom compared with that in the spherical approximation.
The smallest eAect occurs in the carbon atom. The LM
functional also results in a lowering of the total energies
in the nonspherical case, but the eAect is only 60% and
80% as large for carbon and oxygen, respectively, as with
the GGA functional of Perdew. The greater lowering
with the GGA functional results in better binding ener-
gies from GGA than from LM.

One of the more important implications of these re-
sults is in the calculation of binding energies of solids
and molecules, where the LSDA often shows a pro-
nounced tendency toward overbinding. Using as exem-
plary cases the diatomic molecules formed from the four
nonspherical atoms of the first row, we see from Table II
that the inclusion of both nonlocal and nonspherical
corrections gives much closer agreement between theory
and experiment. (The binding energies are calculated
from the minimum of the experimental ground-state
configuration of the molecules. ) While nonlocality alone
eAects some improvement in molecular binding energies
calculated within the spherical central-field model, in-
clusion of nonsphericity in the atom calculations leads to
significant corrections to the tendency of overbinding.
The overbinding is reduced by 70% in the 02 molecule

which is most overbound (2.3 eV) in the LSDA. The
discrepancy in the nonlocal, nonspherical treatment
remains the largest for 02 (0.7 eV). The dramatic over-
binding by 100% in the LSDA description of F2 is re-
duced to 30% in the combined nonlocal, nonspherical
treatment. As can be seen by comparison of spherical
and nonspherical results for Cq (and Fz), going beyond
the central-field model within the LSDA (VWN) does
not guarantee an improved binding energy —improve-
ment is systematically obtained only with the nonlocal
functionals (LM or GGA).

Calculations within the LSDA have characteristically
been in greatest disagreement with experiment in bind-
ing energies, and it has been recognized that the greater
self-interaction error in the atomic limit is the major
source of this problem. Here we demonstrate that a full
treatment of both nonlocal and nonspherical terms in

open-shell atoms allows a cooperative eAect between the
two and provides atomic reference energies that define
greatly improved binding energies in representative
first-row diatomic molecules. Comparable improvement
should be obtained in more general applications to mole-
cules and solids.
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