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The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U)
ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resis-
tivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic
specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data
in the heavy-electron superconductor UBei3 may be understood. Structural phase transitions at unpre-
cedented low temperatures may occur in U-based heavy-electron materials.

PACS numbers: 71.28.+d, 71.70.Ej, 72.15.Qm, 75.20.Hr

Heavy-electron materials have received much atten-
tion because of their interesting many-body physics [e.g.,
giant electronic specific heats ¢, (T) (T being the tem-
perature) unaccounted for by simple one-electron
theory] and exotic low-temperature magnetic and super-
conducting instabilities. !> A central question of the field
is, “*‘How universal are the phenomena?” Specifically,
consider CeCu,Si, and UBe;;. Both compounds are su-
perconductors with nearly identical ¢ curves from 1 to
10 K, and corresponding effective Fermi temperatures of
about 10 K. The resistivities of the two materials [p(T)]
are very similar, with negative dp/dT above about
10 K.'

However, UBe|3 and CeCu,Si, differ substantially in
their magnetic response; e.g., c¢(7T) is nearly field in-
dependent for UBe;3 (up to =10 T), while CeCu,Si;
shows about a 20% drop in comparable fields."'? In addi-
tion, the magnetic neutron-scattering cross section has a
quasielastic peak at about 1 meV for CeCu;Si; (corre-
sponding to the Fermi temperature),* while the peak in
UBey3is at 15 meV.’

In this paper, I propose that the above disparities may
arise from differing underlying symmetries for U and Ce.
In particular, I consider an Anderson model®’ for a sin-
gle U site which leads to the novel possibility of an elec-
tric quadrupole Kondo effect. This is the central result
of this paper: weak field dependence of measured prop-
erties and a missing quasielastic line immediately follow.
Kondo anomalies appear in p(T), ¢ (T), the quadrupo-
lar susceptibility Xo(T), and the magnetic (van Vleck)
susceptibility. Moreover, )?Q(T) is a universal function
of T/Ty (T}, is a characteristic Kondo scale) which loga-
rithmically diverges for 7-— 0. This non-Fermi-liquid
behavior may yield structural instabilities at unpre-
cedented low temperatures in U-based heavy-electron
materials.

In the Anderson-model picture, Ce heavy-electron be-
havior is attributed to the Kondo effect (quenching of
the magnetic moment of the lone Ce 4f electron by anti-
ferromagnetic interaction with conduction electrons,
with concomitant formation of a narrow heavy-electron
resonance). The characteristic energy scale for quench-
ing the spin is kg7, and T serves as a degeneracy tem-
perature and a measure of the fluctuation rate of the lo-

cal moment. Thus, the neutron-scattering quasielastic
peak is near kgT.

Gross heavy-electron properties for Ce compounds
[enhanced c(T) and magnetic susceptibility x(7), neg-
ative dp/dT at higher temperatures, quasielastic peak in
the neutron-scattering cross section] are accounted for in
a single-impurity Anderson model.>® Alloying experi-
ments on (Ce,La;-,)Pb; show the specific heat normal-
ized to Ce content to be the same above 2 K for several x
between 0 and 1.0.° It is only at low temperatures for
the full lattice that coherence (Bloch’s theorem) is mani-
fest with p(T) going to zero, and that intersite correla-
tions play a role (as evidenced by momentum depen-
dence in the magnetic neutron-scattering cross section,
magnetic order, and superconductivity).

For a U ion with a nominally stable 5/ configuration
at a cubic-symmetry site, it is possible to have a low-
lying nonmagnetic quadrupolar doublet which is
quenched. The heavy-electron behavior is then associat-
ed with local quadrupolar fluctuations at an energy scale
kT, defined more precisely below.

The data for dilute U-based intermetallic alloys is far
less substantial '~ '2 than for Ce, but recent work offers
hope for understanding the gross features of concentrat-
ed U systems from the dilute limit. '3

The model U site has these essential features: (i) A
stable 52, J =4 Hund’s-rule ground state within the LS
coupling scheme is assumed at a site of cubic symmetry
(as per UBej3). Rigorously, an intermediate-coupling
description is necessary for actinide ions; however, the
ions lie close to the LS limit.'*'> (ii) The crystal-
field-split /=4 multiplet has a ground-state I'3 nonmag-
netic doublet (see Table I) at energy e;. While excluded
by the point-charge model, !¢ stable I'; levels have been
observed in many cubic praseodymium intermetallics
(with low-lying 42 rather than 5/2).'7 (iii) Only a I',
triplet excited level is retained within the J =4 multiplet,
at energy e,+A. (iv) A 5f! configuration lies above the
I'; level by |ef|; all other configurations are neglected.
(v) Hybridization of the f levels with the conduction
band (of width D) is expressed in terms of the matrix
element

(ka:5f'¢ | Huyo | 529 =VNG2Aa;y;0), (1)
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TABLE 1. lonic cubic crystal-field split states for the model uranium impurity (after Ref.
16). The fifth column gives the projected electric-quadrupole moment. The J =% results may

also be used for conduction partial-wave states.

J State Form (J.) JE2—JU+1)
4 |rs+) 0.54(| )+ | —4))—0.65|0) 0 +8.0

4 |T3—) 0.71(| 2>+ | —2)) 0 —8.0

4 |rs+) 0.35| F3»+094| = 1) +0.5 —14.0

4 | T40) 0.71(|4)— | —4)) 0 +14.0

2 |y %) 041 F$)—-091| £ 3) +0.83 0

3 [Fg+2) 091 = $)+041| F %) +1.83 +8.0

: Mg+ 1) [+ 1) +0.5 —8.0

where k indexes conduction wave number, and a, y, and
¢ are shorthand for the conduction, /!, and f? angular-
momentum states in the cubic field (see Table I for fur-
ther explanation). A(a;7;0) is a group-theoretic factor
containing a Clebsch-Gordon coefficient in the cubic
basis, which has been calculated numerically. The one-
electron hybridization matrix element V is replaced in
favor of T=zN(0)V?, N(0) the Fermi-level density of
conduction states. I do not expect realistic extensions of
assumptions (i)-(iv) to modify qualitatively any con-
clusions presented here. '8

This model can explain the UBe;; neutron-scattering
data. Having no spin moment, the I'; level for the U site
will give no quasielastic neutron-scattering line. The
peak in the magnetic neutron-scattering cross section
could then arise from inelastic magnetic-dipole transi-
tions between the I'; and I'4 levels with A being roughly
15 meV (the splitting may be renormalized by hybridiza-
tion). The observed Schottky anomaly at 70 K in ¢ (7T)
for UBe;; is in accord with an inelastic origin for the
15-meV peak, as noted before.!® Crystal fields have
been previously reported in only one uranium intermetal-
lic. 20

For I'=0, the model also yields the following: (1)
x(T) is dominated by the van Vleck contribution of the
['3-T4 transitions. For A=15 meV, x(0) is estimated as
0.013 emu/mol, to be compared with the experimental
values of 0.012-0.016 emu/mol for UBe;3.! Consistent
with the explanation of X(0) are the facts (a) that the
observed neutron-scattering cross section integrates to
give 80% of the measured static susceptibility® and (b)
that data for X(T— 0) change little with pressure com-
pared to the specific heat?' (which suggest that they
arise from different mechanisms). A model requiring
quenching of a 5f° magnetic Kramers doublet'® would
lead to a quasielastic line and similar pressure depen-
dence in X(T) and c(T)/T. (2) The model gives little
magnetic-field dependence below (0.2-0.3)A/up, which
could be of order 30-50 T.

A limiting case (the 3-7-8 model) clarifies the origin
of the quadrupolar Kondo effect: Take A to infinity,
omit the (5!, J= 3, T,) levels, and omit the conduction
j =% partial-wave states. According to group theory,

the remaining (57, J=3%, I';) and (5/2% J =4, I'3) lev-
els mix only via the conduction j= 3, I'g partial waves.
Applying a canonical transformation?? to the 3-7-8
model yields an effective exchange interaction between
pseudospin- T electric-quadrupole moments of the form

Hex=—2J3x0'3'[0'3(0)+0'g(0)], (2)

where o3 is a pseudospin-+ matrix for the I's quadru-
pole, og3 (og) are pseudospins formed from the I's+2,
I's+1 (I'g—2, I's—1) partial waves (see Table I), and
Jex is proportional to I'/ze,N(0), which is negative.
Equation (2) has the form of a two-channel antiferro-
magnetic Kondo problem; to my knowledge, this is only
the2 second possible realization of the multichannel mod-
el.?

The thermodynamics of this two-channel problem are
obtainable through the Bethe-Ansatz approach,?* but
dynamics and the extension of the model to excited
crystal-field levels are presently beyond this method.
Consequently, I have adopted a numerical self-consistent
perturbation-theory approach which has proven quite
successful for calculations of thermodynamics, transport
coefficients, and excitation spectra for the single-site Ce
problem.® Extensive descriptions of that method appear
elsewhere.?>2¢ Some calculations may be performed
analytically for low temperatures and frequencies.?’ In
the presence of the excited I'4 level, the analytically ob-
tained low-energy behavior maps onto the 3-7-8 model
described above.

Figure | shows p(7T) calculated for the 3-7-8 model
normalized to its analytically estimated zero-tempera-
ture value. The Kondo effect is clearly manifested in the
negative slope.

Also shown in Fig. 1 is the temperature-dependent
effective moment ud(7T) =Txo(T), where Xo(T) is the
quadrupolar susceptibility of the I'; doublet. uj is nor-
malized to unity for an isolated moment. This figure
demonstrates (i) the quenching of the quadrupole mo-
ment (it vanishes for zero temperature), and (ii) the
effective moment is a universal function of 7/T}, where
T, is proportional to Dexpl1/2N(0)J.] and defined
operationally here from p(7T%)/p(0)=%. Such univer-
sality is well known for the usual spin Kondo effect.?®
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FIG. 1. Resistivity [p(7)] and effective moment [p3(7T)] of
the model U ion. The upper two table entries correspond to
the 3-7-8 model. For the lower two table entries, the
temperature-dependent occupancy of the I's level has been di-
vided out of u3(T).

Note that inclusion of the excited I'y level yields u3(7)
curves indistinguishable from those of the 3-7-8 model at
low temperatures. Variational methods have been used
previously to demonstrate the stability of the singlet
(quenched moment) ground state in the absence of a
crystal field.?

Figure 2(a) shows the absorptive part of the dynamic
van Vleck susceptibility X,v(w,T) associated with
I';— I'4 transitions, which is directly related to the mag-
netic neutron-scattering cross section. The shape and
temperature dependence for the larger I' value agree
qualitatively with data for UBe;3.3° Figure 2(b) displays
the associated static susceptibility X,v(0), which shows
temperature dependence well below A/kg. This is in
rough agreement with experiment (filled squares and
filled lozenges on the plot).! However, Z,v(0) is re-
duced, in a parameter-dependent fashion, by typically
20%-40% over the zero-T" limit.

Figure 3 displays calculated ca(T) curves for various
parameter values. The dominant feature is the Schottky
anomaly of the I'y level. The low-temperature shoulders
visible in Fig. 3 for the higher two I values are tentative-
ly associated with the quadrupolar Kondo anomaly (T
being far too small to observe the anomaly for I'=0.11).
Numerical limitations for T— O render the peak height
and position of these anomalies imprecise.

Quantitative agreement with data for UBe;3 might be
possible with inclusion of an excited (51 2 J=4,Ts) lev-
el. 3;l"his adds to the entropy and van Vleck susceptibili-
ty.

It is important to note that, for T— 0, a stable I'; level
may lead to collective Jahn-Teller (JT) structural in-
stabilities for arbitrary quadrupole-strain coupling
strength.3? The Kondo effect quenching of the quadru-
pole moment suppresses the JT instability in a manner
analogous to the suppression of magnetic order in spin
Kondo systems.?® However, the low-energy two-channel
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FIG. 2. van Vleck susceptibility (a) dynamic-¥.v(w,T); (b)
static-Zyv(T') for the model U ion. Line types are the same as
Fig. 1. In (a) note that hybridization shifts the peak position
from A and introduces strong temperature-dependent broaden-
ing of the 4 level. In (b), wmax(0) is the peak position of the
zero-temperature dynamic susceptibility, equal to A for T— 0.

character of this problem leads to non-Fermi-liquid be-
havior: Xg(T) and c(T)/T diverge weakly as In(T}/
T)/T,. (This divergence may be inferred from Bethe-
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FIG. 3. Specific heat for the model U ion. Note that the
Schottky anomaly broadens and shifts downwards as I is
raised from zero. The ratio of the peak temperature to @max(0)
stays roughly constant. The right-hand axis refers to the entro-
py (dotted curve).
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Ansatz treatments®* and from the approach used in this
work). As a result, the JT transition temperature may
be reduced from the I' =0 value of Tj1¢ to a temperature
of order Ty exp(— T4/Ty10) K T}.

Some data for UBe!? are apparently and notably in-
consistent with my model. The magnetoresistance has a
field dependence reminiscent of the pure spin Kondo
effect.*® The muon Knight shift below the superconduct-
ing transition temperature 7, for pure UBe,; is strongly
suppressed as might be expected from BCS theory.?* In
my model, the Knight shift arises from transferred cou-
pling to X,v(T), which should show little change below
T.. [Note: neutron form factor®® and °Be nuclear-
magnetic-resonance measurements®® of X(T) do not
show appreciable change below T,.]
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