Observation of an Oxygen Isotope Effect in YBa₂Cu₃O₇

Kevin J. Leary, Hans-Conrad zur Loye, Steven W. Keller, Tanya A. Faltens, William K. Ham,

James N. Michaels, and Angelica M. Stacy

College of Chemistry, University of California, Berkeley, California 94720, and

Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720

(Received 29 July 1987)

A small decrease in T_c of 0.3 to 0.5 K is observed when as much as 90% of the ¹⁶O in YBa₂Cu₃O₇ is substituted with ¹⁸O. This result is consistent with our observation that there is an oxygen isotope effect in La_{1.85}Sr_{0.15}CuO₄, but in contrast with previous reports that there is no isotope effect for YBa₂Cu₃O₇. This new result suggests that phonons play an important role in the electron-pairing mechanism in YBa₂Cu₃O₇.

PACS numbers: 74.70.Ya

Since the discovery of superconductivity above 90 K in $YBa_2Cu_3O_7$,^{1,2} it has been debated whether the superconductivity in this material is phonon mediated as expected from conventional BCS theory,³ or whether a different mechanism is involved. Support for a nonphonon mechanism was provided when our group,⁴ Batlogg et al.,⁵ reported that the superconducting transition temperature, T_c , does not change significantly when ¹⁶O is replaced with ¹⁸O in YBa₂Cu₃O₇. However, more recently we have observed an oxygen isotope effect in samples of $La_{1.85}Sr_{0.15}CuO_4$,⁶ $La_{1.85}Ca_{0.15}CuO_4$,⁷ and $BaPb_{0.75}Bi_{0.25}O_3$.⁷ The shift in T_c to lower temperatures observed for La_{1.85}Sr_{0.15}CuO₄ when 75% of the ¹⁶O was replaced with ¹⁸O varied between 0.3 and 1.0 K depending on the sample. This shift is smaller than what is predicted by conventional BCS theory. The small decrease in T_c for La_{1.85}Sr_{0.15}CuO₄ prompted us to reexamine the effect of ¹⁸O substitution on the transition temperature of $YBa_2Cu_3O_7$. In this paper, we report the observation of a drop in T_c to lower temperatures by 0.3 to 0.5 K in three different samples of YBa₂Cu₃O₇ when as much as 90% of the 16 O is replaced by 18 O. This shift in the onset of the diamagnetic transition due to ¹⁸O substitution was reversible by resubstitution of ${}^{16}O$ for ${}^{18}O$.

According to the conventional BCS treatment,³ T_c should vary as $M^{-\alpha}$, where M is the oxygen mass. This assumes that the frequency of the important phonon mode depends only on the mass of oxygen. For a value of $\alpha = 0.5$, a shift in T_c to lower temperatures by approximately 5 K is predicted for a 90-K superconductor (on the assumption of complete substitution of ¹⁸O for ¹⁶O). We note that this is the maximum shift expected and that because of the complexity of the structure, i.e., both chains and layers of Cu-O, this prediction is at best tenuous. Although the 0.3- to 0.5-K shift in T_c for YBa₂Cu₃O₇ is smaller than the predicted shift, the presence of an oxygen isotope effect demonstrates that phonons play an important role in the electron-pairing mechanism in this material.

Three samples of YBa₂Cu₃O₇, referred to below as samples I, II, and III, were synthesized via a nitrate route which has been described previously.⁸ This route involved our dissolving stoichiometric ratios of Y₂O₃, BaCO₃, and CuO in nitric acid and evaporating the solution to dryness. The resulting powders were decomposed near 800 °C in Al₂O₃ crucibles. To ensure homogeneous products, these powders were then ground and fired in air for 48 h at temperatures ranging from 750 to 950 °C,

Sample	Isotope	Oxygen pressure (Torr)	<i>T</i> ₁ (°C)	Time at T ₁ (h)	Cooling rate to T_2 (°C/h)	<i>T</i> ₂ (°C)	at T ₂ (h)	Cooling rate to 25 °C (°C/h)
I	¹⁸ O	650	950	12	•••			155
	¹⁶ O	650	950	12				155
II	18 O	530	900	12	100	500	4	238
	16 O	530	900	12	100	500	4	238
II-18 ^a	¹⁶ O	530	900	12	100	500	4	238
III	^{18}O	530	900	12	100	500	4	238
	¹⁶ O	530	900	12	100	500	4	238
III-18 ^a	¹⁶ O	530	900	12	100	500	4	238

TABLE I. Conditions for isotopic exchange.

^aPortion of sample exchanged with ¹⁸O was subsequently treated in ¹⁶O₂ to reexchange ¹⁶O for ¹⁸O.

with four intermediate grindings. The final anneal was in O₂ at 950 °C for 1 h, followed by cooling to 25 °C at 155 °C/h. No impurity phases were detected by powder x-ray diffraction and the samples were all in the orthorhombic phase. The samples were ground and pressed into $\frac{1}{4}$ -in. pellets at 8000 psi for isotopic exchange.

To exchange ¹⁸O for ¹⁶O, a pellet of the superconductor was wrapped loosely in platinum foil and placed in a degassed quartz tube attached to a glass manifold. The tube and manifold were evacuated to less than 10^{-4} Torr before the introduction of ¹⁸O₂. The volume of the system was sufficient to contain at least 50 times the ¹⁸O₂ needed to exchange all the ¹⁶O in the sample. A second portion of each sample was annealed in ¹⁶O₂ under identical conditions. The oxygen pressures and annealing temperatures for the three samples are listed in Table I.

Isotope substitution in these samples was verified by temperature-programmed desorption (TPD) and temperature-programmed reduction (TPR) as described elsewhere.⁹ The quantities of ¹⁸O₂, ¹⁸O¹⁶O, and ¹⁶O₂ which desorbed from each sample during heating in helium (TPD) and of H₂¹⁸O and H₂¹⁶O which desorbed during heating in hydrogen (TPR) were determined to within 3% accuracy by means of a quadrupole mass spectrometer. Since the YBa₂Cu₃O₇ was reduced to Y₂O₃, BaO, and Cu metal, only 50% of the oxygen could be analyzed. The fraction of ¹⁸O in the samples reported in Table II was calculated on the assumption that the fraction of ¹⁸O in the reduction products was the same as the fraction measured in the gases evolved during TPD and TPR.

Meissner-effect measurements on the ¹⁸O and ¹⁶O portions of the three samples are shown in Figs. 1–4. These measurements were performed on a SHE SQUID magnetometer by cooling of the sample from 100 K in a field of 12 G; the field was calibrated by measurement of the diamagnetism of a superconducting tin sphere. As shown in Figs. 1 and 2, the onset of diamagnetism, T_c (onset), for the ¹⁶O portion of sample I occurs at 92.1 K, and the gram susceptibility at 5 K is -5.0×10^{-3} emu/g. The width of the transition for sample I is approximately 14 K, measured from 10% to 90% of the full transition. The diamagnetic onset and the gram susceptibility at 5 K for samples II and III are similar to those

TABLE II. Summary of oxygen-isotope-shift data for $YBa_2Cu_3O_7$.

Sample	T_c (onset) ^{16}O (K)	T_c (onset) ^{18}O (K)	$T_c \text{ (onset)}$ reexchange ¹⁶ O for ¹⁸ O (K)	Shift in T _c (onset) (K)	¹⁸ O (%)
I	92.1	91.6		0.5	90
П	91.4	91.1	91.4	0.3	75
Ш	91.5	91.1	91.5	0.4	73

FIG. 1. Magnetic susceptibility of $YBa_2Cu_3O_7$ vs temperature for the ¹⁶O (open squares) and ¹⁸O (filled squares) portions of sample I.

of sample I, as summarized in Table II. However, the transitions for samples II and III are broader, the susceptibility not becoming constant until below ≈ 60 K.

Despite the differences between the three samples, Figs. 2-4 clearly show that in each case substitution of ¹⁸O for ¹⁶O shifts T_c (onset) to lower temperature. As shown in Table II, the magnitude of the shift is sample dependent and varies from 0.3 to 0.5 K. Moreover, the shift in T_c (onset) is reversed by resubstitution of ¹⁶O for ¹⁸O, as shown in Figs. 3 and 4. The magnetic data near T_c (onset) of samples which were exchanged with ¹⁸O and then reexchanged with ¹⁶O (filled circles) are nearly identical to the data for the samples which were never exchanged (open squares). The residual ¹⁸O after reexchange was 2.0% and 3.3% for samples II and III, respectively.

Although sample inhomogeneities may produce an artificially small shift near the diamagnetic onset, we suggest that this is the best place to measure the shift be-

FIG. 2. Magnetic susceptibility of YBa₂Cu₃O₇ vs temperature for the ¹⁶O (open squares) and ¹⁸O (filled squares) portions of sample I near T_c (onset).

FIG. 3. Magnetic susceptibility of $YBa_2Cu_3O_7$ vs temperature for three portions of sample II: ¹⁶O (open squares), ¹⁸O (filled squares), and reexchange of ¹⁶O for ¹⁸O (filled circles).

cause T_c (onset) is not affected by additional processing, whereas the sharpness of the transition does change with additional processing. Near the midpoint of the transition, the data for the portion of sample III which was resubstituted with ¹⁶O starts to deviate from the data for the portion which was never exchanged. Also, just below the midpoint of the transition, the curves for the ¹⁸O and ¹⁶O portions of samples I and II cross. In contrast, the two curves for sample III never cross. Therefore, while T_c (onset) is reproducible for various samples of YBa₂Cu₃O₇ (see Table II), the transition width is sample dependent.

It is important to emphasize that in order to obtain an accurate value for the isotope shift, it is necessary to prepare samples which have very sharp transitions, and which are isotopically pure and homogeneous. If the samples are inhomogeneous and contain regions rich in ¹⁶O, then the ¹⁶O regions will expel flux at higher temperature than the ¹⁸O regions. This would cause the measured shift in T_c (onset) to be artificially small. For the samples investigated here, even though the substitution was at most 90% as measured by TPD and TPR, the relative rates at which ¹⁶O and ¹⁸O desorbed from the samples as a function of temperature remained constant. This suggests that on a macroscopic scale the ¹⁸O was uniformly distributed throughout the sample.

Because the effects of processing conditions on the properties of YBa₂Cu₃O₇ are not well understood, it is important that the ¹⁶O and ¹⁸O samples be processed under identical conditions. This is shown clearly in Tables I and II, where because of different processing conditions, T_c (onset) for the ¹⁸O portion of sample I was 0.1 K higher than T_c (onset) for the ¹⁶O portion of sample III. In our previous study,⁴ we were expecting an isotope shift on the order of several degrees Kelvin. Since such a large shift would be insensitive to slight differences in sample treatments, we simply compared an ¹⁸O sample

FIG. 4. Magnetic susceptibility of $YBa_2Cu_3O_7$ vs temperature for three portions of sample III: ¹⁶O (open squares), ¹⁸O (filled squares), and reexchange of ¹⁶O for ¹⁸O (filled circles).

with its parent ¹⁶O compound. However, to observe a shift on the order of tenths of a degree Kelvin, the ¹⁸O and ¹⁶O samples which are being compared must be treated under identical conditions. This would explain why no isotope effect was observed. Also, we note that Batlogg *et al.*⁵ reported 75% substitution at an annealing temperature of only 500 °C. In contrast, we performed the isotope-exchange experiments at 900 to 950 °C.

From the results presented above, we conclude that when as much as 90% of the ¹⁶O is replaced by ¹⁸O in YBa₂Cu₃O₇, T_c is lowered by up to 0.5 K. Thus, phonons play an important role in the electron-pairing mechanism in YBa₂Cu₃O₇. This is consistent with our findings for the other high- T_c oxides.^{6,7}

The authors wish to thank E. Hintsa, A. M. Schmoltner, Pamela Chu, and Y. T. Lee for the ${}^{18}O_2$. This research was supported by the Director, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

 1 M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. **58**, 908 (1987).

 2 P. H. Hor, L. Gao, R. L. Meng, Z. J. Huang, Y. Q. Wang, K. Forster, J. Vassilious, and C. W. Chu, Phys. Rev. Lett. **58**, 911 (1987).

³J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. **106**, 162 (1957).

⁴L. C. Bourne, M. F. Crommie, A. Zettl, H.-C. zur Loye, S. W. Keller, K. J. Leary, A. M. Stacy, K. J. Chang, M. L. Cohen, and D. E. Morris, Phys. Rev. Lett. **58**, 2337 (1987).

⁵B. Batlogg, R. J. Cava, A. Jayaraman, R. B. van Dover, G. A. Kourouklis, S. Sunshine, D. W. Murphy, L. W. Rupp, H. S. Chen, A. White, K. T. Short, A. M. Mujsce, and E. A. Rietman, Phys. Rev. Lett. 58, 2333 (1987).

⁶T. A. Faltens, W. K. Ham, S. W. Keller, K. J. Leary, J. N. Michaels, A. M. Stacy, H.-C. zur Loye, D. E. Morris, T. W. Barbee, III, L. C. Bourne, M. L. Cohen, S. Hoen, and A. Zettl, Phys. Rev. Lett. **59**, 915 (1987).

⁷H.-C. zur Loye, T. A. Faltens, W. K. Ham, S. W. Keller, K. J. Leary, J. N. Michaels, and A. M. Stacy, to be published.

⁸G. F. Holland, R. L. Hoskins, M. A. Dixon, P. D. VerNooy,

H.-C. zur Loye, G. Brimhall, D. Sullivan, R. Cormia, H. W. Zandbergen, R. Gronsky, and A. M. Stacy, in *Chemistry of High Temperature Superconductors*, edited by D. L. Nelson, T. F. George, and M. S. Whittingham, American Chemical Society Symposium Series, Vol. 351 (American Chemical Society, Washington, DC, 1987), Chap. 11

⁹S. W. Keller, K. J. Leary, T. A. Faltens, J. N. Michaels, and A. M. Stacy, in Ref. 8, Chap. 12.