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Density-Functional Theory of the Solid-Liquid Interface
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A density-functional theory for the structure and surface free energy y of solid-liquid interfaces is
presented which avoids perturbation and square-gradient approximations by the utilization of (i) the
weighted-density approximation for the Helmholtz free-energy functional and (ii) a physical, two-
parameter density profile of the interfacial region. The hard-sphere f100] fcc-liquid interface is found to
be only four to five layers wide with y=0 66kT/a. , consistent with simulations on the similar e(r/a)
interface.

PACS numbers: 68.45.Ws, 82.65.Dp

The structure and energetics of the solid-liquid inter-
face are of considerable importance in understanding a
variety of phenomena including crystal growth, homo-
geneous nucleation, and dendritic growth. However,
quantitative information, either experimental or theoreti-
cal, has so far been difficult to obtain. Computer simula-
tions are extremely useful for the study of bulk phases
but require considerable time to treat well-equilibrated,
large- sur face-area systems. ' Moreover, the sur face1,2

free energy has been obtained in only a few cases and
only recently with high accuracy. A theoretical study
of the interface requires a priori that the coexisting solid
and liquid be treated from the same general perspective,
thereby precluding the use of the phonon theory usually
used to study crystals. By describing the solid as an in-
homogeneous liquid having a density p, (r) consisting of

AQ =J d r p(r)[kT[ln(p(r)A ) —I]+f[p] —p]+&,
subject to the constraints of liquid [p(r) =pl] and solid
[p(r) =p, (r)] densities asymptotically on either side of
the interface. In Eq. (1), p(lnpA —1) is the ideal-gas
entropy and f[p], the key unknown quantity, is the ex-
cess Helmholtz energy per particle and a nonlocal func-
tional of the density. The interfacial free energy y is

precisely the excess free energy per unit area at the
minimum, @=AD/2 ~;„, and so the structure and sur-
face energy are obtained simultaneously and inseparably.
Formally, the minimum may be found by solving the
Euler-Lagrange equation 8(AQ )/Bp(r) =0. Practical
solutions to this problem, however, require an approxi-
mation for f[p] which is accurate for rapidly varying
densities and then a physical parametrization for p(r),
with the minimization carried out numerically.

Previous studies of the solid and solid-liquid interface
taking the above general approach have assumed that
the solid may be treated as a weakly perturbed liquid.
Lowest-order thermodynamic perturbation theory in

p(r) —
pt is then used to approximate f[p]. Despite

reasonable predictions of some solid and interfacial prop-
erties (with use of additional square-gradient approxima-

sharp peaks centered on the crystal lattice sites (the
nonzero peak widths are due to thermal vibrations), the
solid thermodynamics may be obtained, in principle, us-

ing density-functional (DF) ideas developed in the
theory of inhomogeneous liquids and liquid-state input.
Since the thermal broadening in the solid is small (at
melting, the Lindemann parameter is only about 0.1),
p, (r) is very rapidly varying. The solid thus poses a
stringent test of any DF theory based on liquid-state
quantities. However, with a density functional capable
of accurately predicting the solid structure and equation
of state, both solid-liquid phase coexistence (equal pres-
sure P, chemical potential p, and temperature T in both
phases) and the interfaces between them may be studied.

The interface between coexisting solid and liquid takes
on the structure p(r) which minimizes the excess grand
potential functional AQ (0 = —PV),

tions), the application of perturbation theory to the high-
ly structured solid [p(r) —pt»pI] is suspect. In fact,
perturbation theories predict much more rapidly varying
solid densities than found in simulation studies. This un-

realistic solid structure probably leads to artificially
broadened interfaces and has an unknown eAect on the
calculated surface energies. Variations on this density-
functional approach sufter from similar deficiencies and
related "improved" DF theories are not easily extended
to the interface problem. Finally, no interfaces between
coexisting fcc solid and liquid phases have yet been stud-
ied, although these are the only systems which have been
studied by simulation.

In this Letter, a density-functional theory for solid-
liquid interfaces is presented which accurately predicts
interfacial properties without the use of perturbation or
square-gradient expansions. The Helmholtz free energy
is approximated by use of the weighted-density approxi-
mation (WDA), which yields a nonlocal, nonperturba-
tive functional of p(r) and is, in principle, valid for arbi-
trary inhomogeneities. In addition, a density profile
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providing a physically appealing description of the inter-
facial region is introduced which contains two variational
parameters controlling the full interface width and rate
of broadening of the solid density peaks, respectively. By
a combination of the WDA with this parametrization,
the surface free energy and profile may be calculated
with no further key approximations. As an example, the
hard-sphere [100] fcc-liquid interface is studied and is

found to be fairly narrow, approximately four to five

atomic layers wide, with a surface free energy of
y= 066kT/o, results comparing well with simulation
studies of the similar (r/o) ' [100] fcc interface and
demonstrating that this approach may be used to obtain
quantiI;ati ~ e information on interfacial properties.

The WDA approximation for f[p] is given by the two
equations

theory) in excellent agreement with simulation studies.
The WDA is thus fully capable of handling the varia-
tions in p(r) arising in the interface problem.

Now, the general physical attribute of the interface
between crystal and liquid phases is that as the interface
is traversed starting from the solid side, the sharp density
peaks characteristic of the solid must decrease in height
and broaden in a smooth manner. Upon approach of the
uniform liquid, the density peaks overlap considerably
and the density begins to resemble a weakly perturbed
liquid. The primary factor governing the density profile
is the overall width of the interface, the structural details
roughly scaling with this width. To describe this behav-
ior, p(r) is first expressed in terms of the Fourier
coefficients of the solid reciprocal-lattice vectors 6 (in-
terface perpendicular to z) as

f[p(r)] =f'(P(r)), (2a) p(r) =pt+(p, pt)fo(z)—+QGpG(z)e' '. (3)

p(r) =„d r'w(r' —r;p(r))p(r'). (2b)

po(z) =po, I
z

I
& zp,

Here, f' is the free energy per particle of a uniform
liquid, but evaluated at a weighted density p(r), thereby
reflecting the nonlocality of the exact functional. By
demanding that the WDA functional become exact in

the limit of small density variations, the weight function
w(r;p) is completely specified in terms of f' and the
liquid direct correlation function c (r;p) The WD.A
functional is not perturbative but rather, because of the
self-consistent determination of p(r), can be viewed as
an approximate sum of all terms in perturbation theory
with some terms at each other retained exactly. In ap-
plications to crystalline solids, the WDA predicts the
solid structure, thermodynamics, and solid-liquid coex-
istence conditions of the hard-sphere and Lennard-
Jones (LJ) solids (with use of hard-sphere perturbation

zo zo=(Gi/G)'Az, 0( v( 1, (4)

the exponent v governing the rate of broadening of the
peaks through the interface of width Az (and allowing
for no broadening if v=0). The po(z) are next
parametrized by a simple shape function,

The interface is now characterized by the manner in
which {fo(z),po(z)} vary from their solid phase values
of [l,po} to zero in the liquid. Since the rapid variations
in the solid density broaden in the interface, the po(z) of
the larger G must decay to zero on a shorter length scale
than those of the smaller G. Now the solid peaks are ba-
sically Gaussian, p(r) -exp[ —a(r —R) ], and so if
the near-solid peaks are broadened Gaussians, p(r)—exp[ —a(z)(r —R) ], then the decay length of po
scales like G '. Since the peaks may broaden less rap-
idly, the following general scaling form for the decay
length zo —zo of po (z) is proposed:

=po Il+cos[(z —zo)tt/(zo —zo)]}/2, zo &
I
z

I
& zo,

=0, zo& IzI,

(5)

in a slab geometry (solid phase in the region Iz I
& zo,

liquid in the region I
z

I
) zo+Az, interface width hz).

The spatial variation of fo(z) is taken to be identical to
that of parti(z), where Gi is the smallest G of the solid.
With use of (4) and (5), each po(z) decays smoothly
from its solid value to zero over a length zg zp which is

proportional to the full interface width Az. The width

Az and exponent v are the only parameters varied to
minimize Eq. (I). It is evident from Fig. I (which shows

the planar average of the minimum hard-sphere [100]
fcc-liquid interface width v =0.25) that this simple
description contains the essential physical features of the
interface. The scaling in (4) gives physically reasonable,
positive-definite interface profiles for 0~ v~ 0.8 while

the cosine functions in (5) closely mimic the exact hy-

perbolic tangent functions which obtain from p theories,
especially in the middle of the interface where the pg
vary most rapidly. Also, for large G the decay length is

potentially very short and may invalidate any assump-
tions of slow variations. The quantity zp is, in principle,
a third variational parameter because the location of the
interface relative to the underlying crystal lattice can
vary, but here zo is fixed at the midpoint between [100]
lattice planes. Of course, modifications to (4) and (5) to
account for subtle details of the interfacial structure,
such as slight lattice expansion or contraction, may be
made, but only at the expense of further parameters and
likely with only small corrections to the actual surface
free energy, which is of as much, if not more, importance
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FIG. 1. Planar-averaged density p(z) of the equilibrium
hard-sphere [100] fcc-liquid interface obtained with use of the
WDA and a scaling parametrization for the interfacial profile
in which the length scales for the broadening and weakening of
the solid peaks are the only variational parameters. The inter-
facial width is only four to five atomic layers (five shown) and
the 1ocaI densities at the lattice sites are also noted to em-
phasize the extreme variations in local density through the in-
terface.

than the detailed structure. The scaling law for zg zp
depends only on the magnitude of G and so this two-
parameter form does not possess anisotropy, which could
be introduced by making the scaling law depend on both
G~~ and G, independently, with at least one extra param-
eter. However, the functional used is nonlocal and,
hence, "knows" the orientation of the interface, so that
anisotropy in the interfacial properties can be considered
within the present approach.

The minimization of Eq. (1) to obtain y is now
straightforward and we consider the hard-sphere [100]
fcc-liquid interface as an example. In the following, the
unit of length is the hard-sphere diameter o. and the unit
of energy is kT. The features of the coexisting phases
which are expected to most inAuence the interfacial
properties are a fractional density change of 15.7% on
freezing (p, tr =1.02, pter =0.881), a latent heat of
hs =1.46, and a Lindemann parameter in the solid of
0.101, all in basic agreement with simulation studies. '

Numerical details will be discussed in a longer paper.
The surface energy is found to be y =0.66 ~ 0.02, cor-

responding to a minimum for a width of four to five
atomic layers (four to five layers of neither bulk solid nor
bulk liquid density) and an exponent of v=0.25. Near
the minimum, y is weakly dependent on the precise in-
terface width. Results for v=0.5 are only 0.05 larger

while those for v=0 are 0.17 larger, indicating v & 0.25.
In addition, essentially identical results are obtained for
interfaces in which zo is shifted by a/4. The planar-
averaged density profile p(z) =A ' jdx dy p(r) of the
five-layer, v=0.25 interface is shown in Fig. 1 and is, not
surprisingly, considerably narrower than those obtained
with use of perturbation theories. ' Since the averaged
profile does not show the considerable variations in 3D
structure through the interface, the peak local densities
at the lattice sites in each layer are noted. Even in the
near-liquid layers, the density variations are nonnegligi-
ble for such narrow interfaces. The largest contributions
to y occur in the middle of the interface where the struc-
ture is still appreciable and most rapidly varying, and
hence, the use of a nonperturbative functional such as
the WDA, rather than perturbation and square-gradient
approximations, is clearly necessary in studying this in-
terface. Finally, it is interesting to note that small con-
tributions to the excess free energy do come from the
layers of bulk solid and liquid adjacent to the interfacial
region because the functional is nonlocal on a scale of
about o..

Simulations have not been carried out on the hard-
sphere [e(r/rr) ", n =~1 interface but have been made
on the closely related purely repulsive soft-sphere
e(r/cr) ' system, which freezes into an fcc structure
(and is a good approximation to the high-temperature
Lennard-Jones system). '' Since the freezing transition
is dominated by entropic considerations, a qualitative
comparison of these two systems is justified. Further-
more, some quantitative comparisons are reasonable be-
cause the important quantities hs =1.0 and I =0.14 for
the soft spheres are close to the corresponding hard-
sphere values and the energy of fusion (=0.12kT) is
small in the soft-sphere system. Cape and Woodcock''
found the [100] interface to be seven layers wide, slightly
broader than found here, The surface stress of the
e(r/rr) ' interface, which is similar but not identical to
the surface free energy since a solid can sustain shear,
was determined to be 0.46+ 0.1(kT/e) '~ kT/cr' To.
make a quantitative comparison, we assume that a
hard-sphere system having an effective diameter
d/cr =(e/kT) '~"(1+B/n) (8 =0.5772. . . ) approxi-
mates well the properties of the e(r/cr) " system. '

By scaling our results in this manner, we find
y=0.60(kT/e) ' kT/cr, which is close to the simulation
values. The simulation results also indicate that the
averaged density and structure are varying on the same
length scale, so that the assumption of' fo(z)~po~(z)
made here seems reasonable. A further comparison of
simulated (r/o. ) ' and LJ [100] interf'aces shows them
to be very similar in structure. '' The WDA has been
used to study LJ freezing, and so the present approach
is clearly applicable to the LJ system. In fact, the at-
tractive potential contributions play only a minor role in
the LJ freezing transition and structural results similar
to those obtained here are thus expected.
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In conclusion, a physical parametrization of the inter-
facial density profile has been presented which, in com-
bination with the flexible WDA functional for the
Helmholtz free energy, allows for the determination of
interfacial properties without any assumptions of slow
densi ty r ari ations R.esults for the hard-sphere [100]
fcc-liquid interface show both the capabilities of this ap-
proach and the necessity of allowing for rapidly varying
interfacial structures. The present approach may be
used to study other potential systems, particularly those
amenable to hard-sphere perturbation theory. Accurate
surface tensions, surface structures, and the anisotropies
in these quantities with varying crystal face are thus now
obtainable for a variety of materials.

I am grateful to L. Turkevich, H. Scher, and J. Kerins
for useful discussions.
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