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Direct Measurement of Crystallographic Phase by Electron Diffraction
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Three-beam diffraction is analyzed in a geometry appropriate for high-energy electron diffraction. An
expression for the lowest-order correction to the kinematic intensity is derived, from which a prescription
for measuring a crystallographic-phase invariant is obtained. This analysis is a good approximation for
the diffraction observed in large-convergence-angle electron-diffraction patterns. Phase invariants are
measured in the noncentrosymmetric crystal InP to an accuracy of + 15 . The technique provides a
general and practical method for measuring phases.

PACS numbers: 61.14.Dc

The phase problem has existed since the beginning of
x-ray crystal log raphy. I n order to retrieve a crystal
structure from a diffraction experiment it is necessary to
know both the amplitude

~ U& ~
and phase p& of the

Fourier components (structure factors) of the scattering
potential, but in kinematic x-ray diffraction only the am-
plitudes are available. The absolute phase of a structure
factor has no meaning because it is origin dependent, but
combinations can be constructed which are origin in-

dependent and therefore, in principle, measurable. The
best known of these phase in variants is the triplet
0=tth —tti+p& b where the reciprocal-lattice vectors in-

volved, g, h and g
—h, form a closed triangle. Analysis

of 0 has formed the basis of the direct methods of crys-
tal log raphy.

It has been known for some time that in order to mea-
sure 0 one must consider dynamical diffraction situa-
tions, the most obvious candidate being diffraction at a
three-beam point. ' Intensity anomalies are known to
occur here and several attempts have been made to re-
cover phase information, such as the value of 0 in cen-
trosymmetric crystals (when it is always either 0 or
tr), or the polarity of ZnS-type crystals. Further in-

terest has recently been shown in analyzing x-ray three-
beam diffraction, but at present no simple, general,
and practical method exists for measuring 0. In electron
diffraction the problem is easy to set up in terms of a
3x 3 matrix, but in general, the solutions are intractable
because of the strong diffraction. Indeed, until recently
it has not been possible even to measure structure-factor
amplitudes with high-energy electrons. However, a new
large-angle convergent-beam difrraction technique has
been developed which, with a simple geometry, gives
many difrracted lines with measurable kinematic intensi-
ties. ' The important extension of this work that we

present in this Letter is that the same patterns contain
many visible three-beam diffraction points, and that by
analyzing the intensity distribution at these points we
can recover phase information. An example of this
"Vincent" pattern is given in Fig. 1; three-beam points
are seen where the bright diffracted lines cross Kikuchi

lines. The prescription for phase measurement which we

describe below is general, and can be used in both cen-
trosyrnmetric and noncentrosymmetric crystals. Irnpor-
tantly, only distances, and not intensities, need be mea-
sured on micrographs. It relies on the diffraction being
relatively weak, but as the reciprocal-lattice vectors in-
volved are large, this is not a stringent condition. As an

example, we apply the method to measuring 0 in the
noncentrosymrnetric crystal InP.

Our starting equations are a form of the Howie-
Whelan equations'' which are appropriate for diffraction
near a three-beam point:

dz 2&hz

Here the a&(z) are the amplitudes diffracted into
reAection g as a function of depth z in the crystal; in

three-beam diffraction g and g' only take the values 0, g,
and h. The geometry under consideration is summarized
in Fig. 2. The U are electron structure factors, 0
= [(K+g) —(K+g') f, and K and k, are the trans-
verse and longitudinal components of the incident wave
vector k. A symmetric Laue geometry is assumed, and
the initial conditions at the entrance surface (z =0) are
aa(z =0) =6&o. We shall concentrate on diffraction into

g, although an identical analysis can be used for h.
Two-beam diffraction into g occurs all along the line PQ,
but at special orientations (A in Fig. 2) three-beam
routes become important. These will occur whenever the
diffracted lines cross g —h Kikuchi lines. The three-
beam feature on the g line at 8 in Fig. 2 is obviously
linked with that at C. At the exact three-beam orienta-
tion OA =OB =OC =

~ Ko ~, and if we write K =Ko
+ 6K, 6, becomes hzz

=2 (g —
g ') 6K.

We use an iterative procedure to solve (I). The initial
conditions serve as the zeroth-order amplitude terms

a&, the first-order terms a'~ give the kinematic ap-
proximation to two-beam theory, and inclusion of the
two-path route h, g —h in a is sufhcient to introduce
the phase triplet 0. It is convenient to use the dimension-
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less coordinates

x =h 6K, y =g 6K, P =
i U2k' 2/C' 2/c'

where t is the crystal thickness. Since the diffracted intensity is given by

Iz(x,y, t) = iaz (t)+ai' (t)+ z (t)+. . . i

then, to third order in the potential U,

(2)

jg(x,y, t) =pif (y) —
pzphpi h ~ 1 — cosx ~ coso+ [pzphpz hf(x)f(y)f(y —x)1sino,

X
(3)

(a)

where f(X) = sin (X)/X and 0 =!t!h—!t!I+!t!z-h. The
same expression can be used for diffraction into h, but x
and y must be interchanged and 0 becomes —0. Thus,
we have developed two correction terms to the kinematic
result, each of which depends on the desired phase triplet
0. These are general expressions for all three-beam
diffraction, though since they are essentially kinematic
we should expect them to represent the true diffracted
intensity most accurately when pz((1 for all three g's.
This will be satisfied for large voltages (large k), large g
vectors (such as in Vincent patterns, giving small U's),
and thin crystals (small t). In our analysis we shall need
to know the position of the exact three-beam point which
we do by observing the center of the diffusely scattered
Kikuchi line. Thus, p cannot be made too small or this
line will be too weak to be seen. A more detailed
analysis' indicates that (3) and the prescription for
measuring t) derived from it (see below) work well for P
up to order unity.

Expressions of the approximate form of (3) have been
derived before, but, as mentioned above, they have not
been used to develop a practical prescription for the
measurement of 0. The strongest maxima and minima
of II(x,y, t), i.e., the most obvious intensity anomalies,
all lie along the ridge of the diffraction line of interest, at

y =0. Setting y =0 in (3), the phase-dependent terms

-Q

(b)
FIG. 1. (a) Large- convergence-angle electron-diA raction

pattern at the [653] axis of InP. Accelerating voltage is 250
kV. (b) Enlargement of area shown in (a) showing intensity
anomalies where diff'racted lines (375) and (179) cross (204)
Kikuchi lines.

FIG. 2. Three-beam diAraction geometry. Dashed lines in-

dicate incident orientations, full lines represent bright
diAracted lines, and dot-dashed lines represent Kikuchi lines.
See text for details.
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become

lg(x, 0, t ) =
PgPhPg —g [(—1/x) [ I f—(2x ) ]cos0+f (x )sin 0[ .

] i I

Figure 3 shows a series of plots of this ridge intensity

anomaly for various values of 0. If lg(x, O, t ) is imum (Fig. 3). Therefore.
difterentiated with respect to x then the extremal values
of x, which we write as x„satisfy

(4)

(sin2x, )/x, —cos2x, —I
tanO=

(cos2x, —I )/x, + sin2x,

= —cotx, =tan(x, —
—, tr),] (5)

or, since the tangent function has a period of x,

0 =x, + (n —
—,
' ) rr (6)

Thus, we see that a simple measurement of the position
of intensity maxima and minima relative to the exact
three-beam point x =0 gives us the desired phase triplet
0. If our attention is limited to the strongest extrema,
which occur closest to the three-beam point, then n is 0
for the principal minimum and 1 for the principal max-

Furthermore, the important result
i
x;„—x

serves to define a distance scale in the electron micro-
graph. Thus, we have a prescription for measuring the
phase triplet which is independent of structure-factor
amplitude, voltage, and thickness, and in which only dis-
tances from the center of a Kikuchi line to the strong in-
tensity anomalies need be measured. If only one of the
principal extrema is detectable, we must use the
definition of x (2) to define the distance scale, which will
require a measurement of the crystal thickness I,.

To demonstrate the method a study has been made of
InP, which has the simple zinc-blende structure. The
diff'raction pattern used [Fig. 1(a)] is from the [653] axis
of a room-temperature sample with use of an accelerat-

I i1.0 0 O 30 60'

90 120' Q
0

180 '710 240

270 300 330'

FIG. 3. Diff'racted-line intensity anomalies about exact three-beam point (x =0) as a function of phase triplet 0. x positive goes
into the Kikuchi band.
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ing voltage of 250 kV. This high-index axis was chosen
to provide a clear pattern with not too large a number of
lines. The diflracted lines were indexed by matching to
computer simulations of the pattern. A few examples of
each of the possible reflection types h+k +3 =4n+m,
m =0, 1,2, 3, are labeled in the figure. The presence of
(4n+ 2)-type reIIections, which are systematically absent
in the similar but centrosymmetric diamond structure,
gives rise to phase triplets 0 which are neither 0 nor x; it
is these phases which were measured. In particular, we
have concentrated on the triangle of vectors (375),
(179), and (204) [Fig. 1(b)] in which the Kikuchi band

g
—

h =(204) is of the 4n+2 type, and g is either (375)
or (179). With use of the atomic form factors given by
Doyle and Turner, ' with In at (0,0,0) and P at
(+ —,', + —,', + —,

' ), the phase triplets are predicted to be

037&=(180+39.2)' and 0179=(180—39.2)'. These are
centered about a value of 180 because the interaction
between electrons and atoms is basically attractive. The
crystal thickness has been estimated from subsidiary
fringes on the (315) diA'racted line to be 1100 A. 'o

Reference 13 then gives values of P375 =0.90, P»9 =0.62,
and Pzo4=1. 36. These do not include Debye-Wailer fac-
tors, but are nevertheless a little larger than the op-
timum. They are not large enough to invalidate the
method, ' but will give rise to a greater uncertainty in

the final results.
The positions of the intensity extrema along the

diffracted lines were found by microdensitometer traces
along the lines. The difluse background, which includes
the Kikuchi line profile, was determined by parallel scans
away from the diA'racted line and subtracted from the
line intensity. The resulting elastic intensity has a profile
similar to those of Fig. 3. The distance scale to be used
in the analysis was obtained both from the maximum-
minimum separation (7) and from the thickness mea-
surement using (2). These agreed to within 20%. The
prescription (7) also requires our knowing the exact posi-

tion of the three-beam point. This was taken to be where
the Kikuchi line profile has its maximum gradient. The
related anomalies along the (375) and (179) lines were
both analyzed, giving the phase triplets as 0375=(180
+36) + 15 and 8&79=(180—43) +'15'. These
agree well with the Doyle-Turner values and also estab-
lish the polarity to be as given above. The main sources
of error are in the measurement of the positions of the
intensity extrema and the exact three-beam point, and in
the neglect of higher-order terms in the intensity expres-
sion. With a more elaborate analysis, it is expected that
the errors quoted above can be reduced. Other factors,
such as absorption could also aA'ect the analysis —this
will be addressed in future work.
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