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Electronic Structure of Ultrasmall Quantum-Well Boxes
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The electronic structure of interacting, few-electron systems confined in quasi-zero-dimensional, ul-
trasmall, quantum-well boxes has been calculated by use of the multielectron eAective-mass Schrodinger
equation. The configuration-interaction method is used to include electron correlation. Correlation
eAects are dominant in large boxes; the electrons form a Wigner lattice. In smaller boxes subband spac-
ing becomes dominant and the carriers become frozen in the lowest subbands. The calculations deter-
mine how and on what size scale this transition occurs.

PACS numbers: 73.20.Dx, 71.45.Lr

Individual atoms are the microscopic limit for very
small, confined-electron systems, in which the motion in
all three spatial dimensions is quantized. Bulk systems
bounded by surfaces are the macroscopic limit for very
large, confined-electron systems. Recently, systems in
the intermediate, mesoscopic regime, where the crossover
from atomic to bulk behavior occurs, have begun to re-
ceive attention. Studies ' of semiconductor microcrys-
tallites, with dimensions L from one to several tens of
nanometers, extend the investigation of carrier-con-
finement eAects away from the atomic limit. With the
recent advances in the art of microfabrication, ultrasmall
(0.02 pm + L 0.5 pm) quasi-zero-dimensional quan-
tum-well boxes can be made which exhibit carrier
confinement, extending the investigations away from the
macroscopic limit and into the submicrometer size re-
gime. The properties of ultrasmall structures are
governed by the physics of the mesoscopic regime. Be-
cause ultrasmall structures give promise of novel, device
applications, ' '' there is strong motivation to develop
quickly an understanding of mesoscopic physics.

The carriers in a bulk (L ~ 1.0 pm) structure form a
many-electron system of weakly interacting particles
which can be modeled by the single-particle efective-
mass equation. In ultrasmall structures (L ~0. 1 pm)
the effective-mass approach still provides a good descrip-
tion of the motion through the lattice. However, the car-
riers cannot be assumed to be a weakly correlated
many-particle system. Consider a quantum box con-
structed with use of the confinement at an interface to
define one of the confined dimensions. For a typical
inversion-layer charge density of 10 ' ' cm, a two-
dimensional uniform gas in a square, O. l-pm-wide box
would contain ten carriers; in a box 0.01 pm wide, less
than one carrier. Carriers in ultrasmall boxes must be
treated as interacting few-particle systems. In this
Letter I calculate the electronic structure of interacting,
few-particle systems confined in ultrasmall quantum-well
boxes to determine how and on what size scaIle the car-
riers in ultrasmall structures become correlated.

The few-particle (N ~ 6) systems have been studied'2
by solving the multiparticle effective-mass Schrodinger

equation for two-dimensional, interacting particles con-
fined in a box modeled as a strictly two-dimensional
quantum well. No eAects of inversion-layer width are
included. For simplicity the well is rectangular and has
infinite barriers. Because the barriers are infinite, a basis
set of wave functions which are separable in the two
directions that define the well can be used. The single-
particle one-dimensional eigenstates (sines and cosines)
are used as the basis functions.

The particle interaction is the Coulomb interaction
screened by the background dielectric constant. The
correlations are included by use of a configuration-
interaction approach. The multiparticle wave function is
expanded in terms of Slater determinants constructed
from the single-particle noninteracting eigenstates. The
kinetic-energy and interaction matrix elements are found
by used of the Slater-determinant basis and the Hamil-
tonian is diagonalized to find the eigenstates, The evalu-
ation of the Coulomb matrix elements is straightfor-
ward. '3

In the infinite-barrier model, all kinetic-energy matrix
elements scale as 1/L and all interaction matrix ele-
ments scale as 1/L when the dimension L of the box is
changed without changing the box shape. This scaling
determines the nature of the electron system. For small
L, the Coulomb interactions are insignificant compared
to the single-particle level spacings; the electrons are in-
dependent, uncorrelated, particles. As L increases, the
interactions become significant and the multielectron
states become correlated. The multielectron states
evolve continuously, as L increases, from the exact,
independent-particle states of the small-L limit. In the
infinite-barrier model, the results are independent of the
electron mass m, and dielectric constant t. if all energies
are scaled by the eAective Rydberg, R, =e m, /2aoe,
and the lengths are scaled by the efI'ective Bohr, a,
=aoe/m, . To illustrate the important size scales, I pre-
sent results for GaAs wells, m, =0.067mo and a=13.1.
The lengths are scaled by ao and energies by R, .

The evolution of the energy levels of an interacting,
confined system that occurs when the box size changes is
shown in Figs. 1 and 2 for two simple systems: two in-
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FIG. l. Energy levels for two electrons in a long, narrow
(L» =10L„)GaAs quantum-well box. The spacings are mea-
sured relative to the ground-state energy Eg and scaled by R, .
(a) For noninteracting electrons L» =20ap, Es =1.905R„and
R, =10sx R, . For interacting electrons L»/ap, Es/R„and
R,/R, are (respectively) (b) 20, 1.907, 105; (c) 200, 1.923,
10; (d) 2000, 1.987, 10; and (e) 2X 10, 2.314, 0.1. The pari-
ty P (e = even, o = odd) and total spin 5 of each state are in-
dicated.

teracting carriers in (a) long, narrow (L:L» =10L,)—
quantum boxes (Fig. 1) and (b) square quantum boxes
(Fig. 2). The energies are scaled by a factor R, which is
different for each L to account for the 1/L scaling of the
kinetic energies. '" If the Coulomb interactions were
unimportant, then the scaled energy levels would be in-
dependent of L. The increases in the scaled ground-state
energy and the changes in the level spacings that occur
as L increases show how important the electron-electron
interaction becomes in large boxes.

The internal motion of electrons in long, narrow struc-
tures is quasi one dimensional because the carriers are in
the lowest subband of the narrow (x) direction. Mixing
of higher x subbands is insignificant in the size regime
covered in Fig. 1. Ten y subbands were used to account
for correlations along the long direction. Energies calcu-
lated with 10 y subbands diAer from energies calculated
with 8 y subbands by less than 0.1%. The internal
motion in the square box is two dimensional. Six x and
six y subbands were used to obtain energies accurate to
0.1% in square boxes. The eff'ective Coulomb interaction
increases as the dimensionality is lowered. ' The
Coulomb contribution to the ground-state energy Eg is
larger, when measured on a common energy scale, in a
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FIG. 2. Energy levels for two electrons in a square GaAs
quantum-well box. L»/ap, Es/R„and R/R, a,re (respectively)
(a) for noninteracting electrons, 20, 0.377, 104; and for in-
teracting electrons, (b) 20, 0.387, 10; (c) 200, 0.456, 10; (d)
2000, 0.996, 1; (e) 2X10, 3.925, 0.01; and (f) 6X10, 4.373,
0.0022. The x and y parity and total spin of each state are in-
dicated. States with odd-x, even-y parity are degenerate with
even-x, odd-y parity states and are not shown. Additional de-
generacies not due to parity or spin are shown in parentheses.

long, narrow box than in a square box with the same
long (L») dimension.

For L~ ~1 nm, the scaled energy levels shift slightly
from the noninteracting levels, and exchange splitting
occurs. Typically, states with total spin 5=1 have lower
energy (Hund's rule) than S=O states with the same
parity. When L~ = 10 nm, the scaled energy levels shift
substantially from the levels of the noninteracting system
and have begun to cross in long, narrow boxes.
Significant Coulomb contributions to Eg begin to occur
on this length scale. When L~ =100 nm, substantial
reordering of the levels occurs in both square boxes and
long, narrow boxes.

In the large-L limit, where interactions dominate the
kinetic energy, the system should become strongly corre-
lated, with the electrons located to minimize the repul-
sive interaction as in a Wigner lattice (WL) for un-
confined systems. The signature of the WL states in a
confined system is the degeneracy of the levels. For ex-
ample, in a long, narrow box there is one way to put two
particles with the same spin on the box axis to minimize
the direct Coulomb interaction. For two particles with
opposite spin, there are two configurations. In a square
box the particles would sit on opposite ends of the same
diagonal in the WL limit. The degeneracy would be
double the degeneracy for a long, narrow box since there
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are two equivalent diagonals. In long, narrow boxes, the
evolution of the states into levels with the degeneracies of
the WL limit' occurs when L ~0.1 pm and the splitting
of levels that are degenerate in the WL limit is no longer
apparent. The WL limit is reached at larger L for
square boxes because the eAective Coulomb interaction
is weaker. Ceperly ' found that a two-dimensional elec-
tron gas becomes a WL when r, & 33a, . In GaAs the
WL would occur for r, & 0.34 pm. This is consistent
with the length scale on which the confined square sys-
tem approaches the WL limit.

The evolution of the energy levels is more complicated
for systems with more than two particles. When N & 2
the level mixing is more complex, degeneracies in the
WL limit are higher, and the transition to the WL limit
occurs at larger L, requiring more accurate calculations
to reach the WL limit. I calculated the cases of three
and four particles in long, narrow boxes with accuracy
adequate for tracing the evolution to the WL limit. For
square boxes, the level degeneracies of the WL limit are
not obvious when the number of particles is incommens-
urate with the symmetry of the structure; for example,
when a square box contains three particles. The present
results suggest that three spin-parallel electrons in a
square box have four degenerate states in the WL limit.
This is the degeneracy expected from the symmetry of
the box. However, I have not yet been able to calculate
with adequate accuracy the states for two parallel- and
one opposite-spin particle to confirm that the degeneracy
in the WL limit is twelve, as needed to be consistent with
the results for parallel-spin particles.

The spatial correlations of two particles in square
boxes is shown in Fig. 3. For boxes in which the con-
fining potential dominates, the carrier density cr(r) ap-
proaches the independent-carrier density. As L in-
creases, the carriers move apart along the diagonals with
o(r) peaking farther from the center, and the density on
the diagonals increases relative to the density oA the di-
agonals. In addition, as L increases, the particle posi-
tions become more strongly correlated. As L increases,
the probability, cr(r, ro), for finding one particle at r if
the second is on a diagonal at ro increases for r at the op-
posite end of the same diagonal and decreases for other
r.

The multiparticle wave functions evolve, as L in-
creases, from the single-configuration Slater-determinant
states of the noninteracting system by a mixing in of oth-
er configurations with the same parity and spin. For
L ~ 0.01 pm, the only important configuration (probabil-
ity +0.95) in the interacting ground state is the nonin-
teracting ground-state configuration. For L & 0. 1 pm,
the excited noninteracting configurations are mixed in
with comparable or greater probability than the nonin-
teracting ground state. The important excited con-
figurations of an infinite-barrier confined system are
different from those of an atomic system. In an atom the
excited single-particle levels get closer together (like
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FIG. 3. Ground-state single-particle density cr(r) and the
two-particle conditional density cr(r, ro) for two particles in a
square box: (a) for noninteracting particles; and for inter-
acting particles, (b) L =200ao, (c) L =2000ao, and (d) L
=20000ao. The paths in the insets define the contours on
which the densities are determined. The dot in the inset and
the arrow on the axis indicate the position ro. The densities are
scaled for each L so that the densities of the noninteracting
states are independent of L.

0.5

I/n ) as the excitation level n increases, and the most
important excited configurations in an atomic correlated
state are the single-particle excitations from the highest
filled level. In contrast, the excited single-particle levels
of the infinite-barrier box get farther apart (like n ) as
the excitation level increases, and the most important ex-
cited states in a correlated state are excitations to the
lowest empty level. To conserve parity, such excitations
must be two-particle excitations from the highest filled
level or single-particle excitations from deeper in the
core. For three- and four-particle systems, the most
probable excited configurations are those with empty
cores and those with unpaired spins in the core.

In small (L +0.01 pm) infinite-barrier boxes the cor-
relations are weak. However, the importance of
Coulomb interactions in small boxes defined by finite
barriers is underestimated by the present model because
the infinite-barrier model overestimates the competing
kinetic-energy eAects. In boxes defined by finite bar-
riers, correlation eAects should extend to smaller size
scales, and Coulomb repulsion should inhibit the pairing
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of electrons. For example, in the smallest square box
(L = 1 nm) considered in Fig. 2, the energy cost to pair
two electrons is 0.01R, =5.3 eV, more than any realistic
finite barrier in a GaAs structure.

In conclusion, particle-particle correlations occur on
the mesoscopic length scale in quantum microstructures.
The correlations are a few-particle, rather than a many-
particle, effect. As a consequence, these structures dis-
play a rich variety of electronic properties —unpaired
electrons, weakly correlated states, and confined Wigner
lattice states —that make microstructures intriguing sys-
tems to study.

This work was performed under the McDonnell Doug-
las Independent Research and Development program.
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