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Silicon dioxide is fundamental in geology, in the electronic materials industry, and in the glass indus-

try. We have carried out an ab initio total-energy minimization study of the structure and bonding of
alpha cristobalite using nonlocal pseudopotentials in a Car-Parrinello-type molecular-dynamical meth-
od. The electronic energy is expressed in the local-density approximation. The use of a separable nonlo-
cal pseudopotential preserves the O(M1nM) scaling of the computation for M plane waves. The result-
ing theoretically computed minimum-energy structure agrees well with experiment.

PACS numbers: 71.10.+x, 61.16.—d, 61.60.+rn

In spite of the predominant role SiO~ plays in geology,
electronic devices, and the glass manufacturing industry,
there have been few first-principles studies of the bond-
ing and structure of silica. This lack stems from the rel-
atively complex structures in which silica is found, as
well as the difficulty of handling the oxygen ion with
pseudopotentials and plane waves. In this paper we will

show how both of these problems are solved by coupling
new developments in density-functional theory with non-
local pseudopotentials which are separable in momentum
space.

It has long been a desire of condensed-rnatter theorists
to be able to predict the structure and excitations of real
materials entirely from first principles, with virtually
no experimental input. In recent years this ambitious
goal has to some extent been realized. ' Two important
breakthroughs have led to the current state of the art.
First came the development of a tractable description
of electron interactions and energies through density-
functional theory and the local-density approximation.
Second was the development of realistic and transferable
pseudopotentials which can be produced with no experi-
mental input. This pseudopotential density-functional
total-energy method has been applied to an enormous
variety of systems with great success.

Having available realistic energies and realistic forces
on atoms, one would like to go beyond static or quasi-
static calculations and study the actual dynamics of
atomic motion with the quantum-mechanical treatment
of electron bonding. The standard plane-wave method
would require about two to eight diagonalizations of a
large Hamiltonian matrix to achieve self-consistency in

the electronic charge density. These several diagonaliza-
tions would have to be repeated for each update of the
ion coordinates, leading to a very time-consuming calcu-
lation. For this reason, such calculations have not been
performed. Nevertheless, the ability to perform molecu-
lar dynamics within the local-density approximation is
desirable both for the dynamical studies of atomic
motion as well as for the ability to perform simulated an-
nealing on the ions to find efhciently and reliably the
minimum-energy structure over many coordinate varia-
tions.

This bottleneck was broken when Car and Parrinello
(CP) suggested combining the molecular dynamics on
the ions with a fictitious dynamics for the electrons
which simultaneously minimizes the energy with respect
to electron and ion degrees of freedom. The mole-
cular-dynamical method of minimizing the energy with
respect to electron degrees of freedom is equivalent to
using an iterative scheme for diagonalizing the Hamil-
tonian matrix, with the added advantage that for small
displacements of the ion on every time step the electron
states change little and can be approximately remini-
mized with only a single iteration. Ordinarily the num-
ber of computational steps in such a scheme would scale
as O(M2) for M basis states for each time step, simply
from the matrix multiplication required to obtain the
forces for updating the electron coordinates. By the use
of plane waves, however, the operation of the potential
on the wave function becomes a convolution which can
be computed by fast Fourier transforms, thus reducing
O(M ) to O(MlnM). As M reaches 5000 or more, the
savings in computation time is substantial.

The original CP method has been improved by the use
of a harmonic-oscillator integration scheme in place of
the Verlet algorithm. The harmonic-oscillator algo-
rithm can allow a factor of 10 fewer time steps to gain a
particular convergence, which allows application of the
method to larger systems of interest. Another modi-
fication to CP involves use of Gram-Schmidt orthogonal-
ization in place of the Lagrange-multiplier solution by
the Rychaert ' method. This can turn out to have im-
portant consequences when the initial trial wave func-
tions have an accidental symmetry, because the Gram-
Schmidt orthogonalization can break an accidental sym-
metry which would remain unbroken by the Lagrange
multiplier solution. '' These modifications of the original
CP method have successfully been applied to the study of
the Z =5 (001) twist grain boundary in Ge ' and to the
Ge(100) surface. '

Nevertheless, not all elements are adequately treated
with a local pseudopotential. To perform reliable calcu-
lations including such elements as oxygen a nonlocal
pseudopotential is required. Operation of a nonlocal po-
tential on the wave function is not a convolution, and so
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it naively would require O(M ) steps. By choosing the
nonlocal potential to be separable in momentum space,
however, the operation on the wave function scales as
O(M). A separable nonlocal pseudopotential difterent
from ours has been used previoUsly in studies of Si ' and
Se. ' We have used a form of separable potential pro-
posed by Kleinman and Bylander' (KB) and found it
very successful. This paper describes the implementation
of the KB separable pseudopotential and its application
to a study of the structure and bonding of alpha cristo-
balite.

We begin by comparing the form of the plane-wave
matrix elements of a nonseparable nonlocal pseudopoten-
tial with the KB pseudopotential ~ KB call the usual
nonseparable nonlocal pseudopotential "semilocal" (SL)

because it is nonlocal in the angular coordinates but local
in the radial coordinate. The KB pseudopotential, by
contrast, is nonlocal (NL) in both the angular coordi-
nates and the radial coordinate. Being separable in
momentum space means that the momentum matrix ele-
ments are expressible in the form

(q ~
V

~

q') =g, f, (q)g, (q')

for some functions f and g, and the number of such func-
tions is much smaller than the number of plane waves M.
In our case the local pseudopotential and the nonlocal
corrections SVt (r ) for angular momentum l are norm-
conserving pseudopotentials. ' ' In the typical im-
plementation ' the momentum matrix elements are
nonseparable and are of the form

(q ~ VsL ~ q ') =+4tr(2l + 1)Pt (cos(0, ) ) dr r j t (qr )j t (q 'r )BVt (r ),
I

qq gp

where jt is a spherical Bessel function and by the definition the nonlocal correction 6Vt(r) goes to zero just beyond the
core radius of the pseudopotential. PI is a Legendre polynomial and the angle 0 ~ is the angle between the momentum
vectors q and q'. By contrast, the KB separable momentum matrix elements are of the form

(q~ VNL~q') =+4tr(2l+1)Pt(cos(0, )) drr jt(qr)gt(r)6Vt(r)
I

qq

dr r j t (q 'r ) Pt (r) 6Vt (r) dr r [Pt (r )] 6Vt (r).

Here hatt(r) is the atomic radial pseudo wave function in

the reference state used to generate the nonlocal pseudo-
potential ~ By construction the KB NL pseudopotential
reduces to the SL type when applied to the reference
state, so either choice of pseudopotential identically
reproduces the all-electron properties of a reference
atomic state. In spite of the fact that the SL and NL
pseudopotentials are diff'erent operators, they both have
the highly desirable transferability of norm-conserving
pseudopotentials. This follows from the fact that both
operators, which are actually corrections to the local
pseudopotential, vanish for radii larger than the pseudo-
potential core radius.

The model yields a good description of crystalline Si,
with a lattice constant which is too small by 1.2%. Ap-
plying the model to study the equilibrium structure of al-
pha cristobalite provides a much more stringent test. Al-
pha cristobalite has four Si02 molecules in a tetragonal
unit cell of space group P4~2~2, or D4. ' A perspective
drawing of the structure is given in Fig. 1. The Si atoms
occur at a special WyckofI' position with one degree of
freedom, but the 0 atoms occur at the general position
which therefore has three degrees of freedom. For these
initial studies we use the minimal unit cell of twelve
atoms and allow both the Si and 0 atom positions and
the a and c axis length scales to vary in order to mini-
mize the total energy. By symmetry there is one Si posi-
tion and one 0 position in the unit cell, the rest of the
positions being equivalent under symmetry transforma-
tions. With one degree of freedom for Si, three for 0,

FIG. l. A perspective drawing of the alpha-cristobalite
structure projected down the a cell edge. The tetragonal unit
cell is outlined. Silicon atoms are smaller and blackened. The
twelve atoms (four Si and eight 0) inside the unit cell are
numbered in accord with the symmetry operation which gives
each atom as listed in the International Tables for Crystallog
raphy (Ref. 20). Sixfold (six Si and six 0 atoms) rings of
bonds in the chair configuration can be seen in both face-on
and edge-on views.
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and two length scales, there are a total of six degrees of
freedom to describe the crystal when its full symmetry is

imposed. These studies retain the space-group symmetry
and use one special point ' at k =( 4, —,', —,

' ) in units of
the primitive reciprocal-lattice translations. The simpler
calculation which uses only k=(0, 0,0) gives unrealistic
results when compared with the experimentally rnea-
sured structure.

The basis includes plane waves out to a kinetic energy
of 20.75 hartrees which includes about 5240 plane waves
at k=( —,', —,', 4 ). The gradients of energy with respect
to primitive ce11 translation lengths are corrected to ob-
tain the desired derivatives at constant resolution from
the actually computed gradients at constant plane-wave
number M. This is accomplished by the estimation of
clE(M)/t)M numerically and the computation of

6E 9E

with t)M/t)l =M//, l =a, b, or c lengths. This correction
prevents the lattice from contracting in response to an

unphysical force arising from the improved description of
the wave function for the same number of plane waves
and a smaller unit cell.

The minimum-energy configuration is found by simu-
lated annealing, treating electron wave functions, ion
coordinates, and lattice length scales as dynamical vari-
ables which respond to forces given by gradients of the
total energy. We use the term annealing in the sense of
a continuous removal of kinetic energy from the ions,
done in the present work, as opposed to a steepest des-
cent quench which simply follows the gradients to find a
minimum. In the present case we did not observe local
minima so that a steepest-descent quench would prob-
ably have succeeded. The results of this simulation and
a comparison with the experimentally determined ion lo-
cations and lattice parameters are given in Table I.

The resulting agreement is excellent. It is well to re-

(a) (b)

(c)

member that the only experimental inputs to the calcula-
tion are the atomic numbers of Si and 0, the space
group, and the number of atoms in the unit cell. None
of the six structural coordinates given in Table I are re-
lated by symmetry or fixed by symmetry.

In addition to yielding a minimum-energy structure,
the method gives the related local-density-approxima-
tion eigenvalues and eigenstates. Figure 2 shows the re-
sulting valence pseudoelectron charge density in an
0—Si—0 bonding plane. Symmetry allows four difter-
ent 0—Si—0 bond angles, all of which turn out to be
near the tetrahedral angle of 109'. The plane of the
bonds plotted in Fig. 2 includes the atoms labeled 1, 1,
and 5 in Fig. 1; in the theoretical structure these atoms
form an angle of 108.13'.

The first three panels resolve the valence pseudocharge
density into contributions from various sets of bands,
as described in the caption. This figure shows that
the valence charge separates into O(2s )-like, 0—Si-
bonding-like, and O(2p)-like nonbonding charge in al-
pha cristobalite, as has been seen in other silica studies.
In particular the lowest set of bands [Fig. 2(a)] provides
O(2s)-like core states which reside mostly on the 0
atoms, the next higher set [Fig. 2(b)] provides charge
density of O(2p)-like character which lies along the

Parameter
Experiment

(10 K)

0.3047 (2)

Theory

0.3030

a (%)

—0.56

Ox

Z

a (A)
c (A)

0.2381 (2)
0. 1109(2)
0. 1826 ( I )

4.9570(1)
6.8903 (2)

0.2380
0.1112
0.1825

4.959
6.906

—0.04
+0.27

0.05

+0.04
+0.23

TABLE I. Experimental (Ref. 23) and theoretical unit-cell
parameters for alpha cristobalite, and their percent diff'erence.
The numbers in parentheses are the standard deviations of the
last significant digit for the time-of-flight neutron powder
diflraction data. The atom locations are given in units of the
primitive translation lengths a =b and c.

I IG. 2. A contour plot of valence pseudo charge densities in
an 0—Si —0 bonding plane, in units of e A '. Lozenges show
the locations of 0 and Si atoms, and straight lines show the
bonds. The average charge density is 64 electrons per cell or
0, 376 e A 3. In panels (a), (b), and (c) the contours are
drawn starting at 0.25 e 4 3 and are spaced by 0.25 e A
In panel (d) the contours start at 0.50 e 4 and are spaced
by 0.50 e A 3. (a) The lowest eight bands, constituting the
0(2s)-like core states; highest contour is 2.0. (b) The next
eight bands (9-16), constituting the 0(2p)-like and Si bond-
ing states; highest contour is 2.75. (c) The upper sixteen
valence-band states, constituting the 0(2p)-like nonbonding
states; highest contour is 4.0. (d) The total charge density
(sum over all 32 valence bands); highest contour, centered on
the 0 atom, is 5.5 (the ofl-center contour near the maximum is
at 4.5).
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bond, and the highest set of valence bands [Fig. 2(c)]
provides charge density of O(2p)-like character which
lies perpendicular to the bond. The total charge density
[Fig. 2(d)] shows that a majority of charge is localized
near the 0 atom.

In this paper we have incorporated a particularly
efficacious form of nonlocal pseudopotential for use in
the molecular-dynamical method of computing electronic
structure and total energies within the local-density and
pseudopotential approximations. This computational
scheme is fully self-consistent in the electronic charge
density and is ab initio. The resulting method, which in-
cludes a molecular-dynamical treatment of ion motion
as well, has been used to find a minimum-energy struc-
ture for alpha cristobalite. In comparison with low-
temperature neutron diA'raction studies of the structure,
the resulting minimum-energy structure is in excellent
agreement with experiment. The nature of the bond for-
mation is also revealed by the resulting pseudo wave
functions and their charge densities. This theoretical
tool can now be used to study the structure at nonzero
temperature and in the presence of structural defects and
impurities.

We are grateful to Yaneer Bar-Yam for discussing,
before publication, an optimal oxygen pseudopotential
and considerations of basis-set convergence. We also ac-
knowledge helpful discussions with David P. DiVincenzo.
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