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Faceting in Bond-Oriented Glasses and Quasicrystals
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We show that long-range positional order in the sense that the density Fourier transform is a set of 6
functions is not essential for the phenomenon of facet formation. Facets can occur in certain classes of
perfect bond-oriented systems which lack the conventional long-range positional order, allowing the ap-
pearance of widths in the diA'raction peaks. The predicted facets in some of these systems are consistent
with the recently observed triacontahedral grain shapes in A16LiCu3 and dodecahedral grain shapes in
Al-Mn-Si, as well as strong spatial disorder as indicated by the x-ray diAraction measurements.

PACS numbers: 61.50.Cj, 61.40.+b

It is well known that both in equilibrium' and during
growth processes, crystal surfaces often have facets.
The phenomenon of facet formation is generally thought
to be a consequence of the long-range positional order
(LRPO) of the system. This conventional wisdom is

called into question by the icosahedral phase recently
discovered in A16LiCu3. This icosahedral phase has
two important features. Its grains have facets, and its
x-ray diffraction peaks show radial widths very similar
to those in Al-Mn, reflecting a short-range positional or-
der with a correlation length of 10 —10 A. The fas-
cinating aspect of these features is that they appear to be
inconsistent with each other. While it is generally be-
lieved that LRPO is the origin of facets, the x-ray mea-
surements show that this seemingly crucial element is

absent.
The observed grain shape in A16LiCu3 is a rhombic

triacontahedron, and Al-Mn-Si exhibits dodecahedral
grain shapes. In general, the largest growth facets at
T~0 will also be the largest equilibrium facets at
T=0. ' The T~O growth shape thus provides useful in-

formation about the T =0 equilibrium shape (which
reflects directly the directions of the dominant bonds in

the system), and vice versa.
I n this Let ter, we present the simplest possible T =0

equilibrium shapes for perfect bond-oriented systems
(PBOS's) with icosahedral symmetry, a sufficient condi-
tion for faceting which has no apparent relation to
LRPO, and an example ("quasiglass") demonstrating
that a positionally disordered system can have facets.

The PBOS's considered here all have the following
property; The pair correlation function v(r, A) =p(r)

&& p(r+A) within the range of interaction A* between
atoms, is of the form

y(r, A) =g,6(A —A, )h(r, A, ),

where p(r) is the density, and A, is a finite set of
specified vectors whose appearance is determined by the
function h. According to Eq. (1), each atom in the sys-
tem has neighbors in only a finite set of directions. A
PBOS may or may not have LRPO. The existence of
LRPO implies that the diffraction pattern consists of a
set of 6'-function Bragg peaks. If the peaks have widths

Ak, the positional order is no longer long range, but has
a correlation length =tt/hk. Independent of the exis-
tence of LRPO, the bulk average of the correlation func-
tion,

v(A) —= (v(r, A))„=„dVv(r, A)/Jr dV,

over a large volume r1 is a finite set of 8 functions, v(A)
=g, 6(A —A, )h(A, ), where h(A, ) —= (h(r, A, ))„, and
4 (A *. PBOS's without LRPO are referred to as
bond-oriented glasses. Although the observed icosahe-
dral phases may not be PBOS's, Eq. (1) is satisfied by all
currently proposed models for the icosahedral phase.
Our motivation for studying these systems, however, is to
demonstrate that bond-oriented glasses have facets.

(1) 2 sufhcient condition for faceting in PBOS's and
the "simple bond-oriented glass. "—Let us recall that
equilibrium facets in crystals are due to the presence of
cuspss 9 in the surface energy density y(n) in the angular
space, n being the unit normal to the crystal plane. The
surface energy associated with a surface X (normal to n)
which is macroscopically flat but can have variations on
atomic scales is

(h (r, A ) )„(A,) = h (A), (3)

Eq. (2) then implies a surface energy density [with use
of the fact that

d'r=„dS(r) [n(r) A] =(n A~(a«a)],

y(n) =g, ~n A, ~g(A, ), where g(A, ) =+~A,
~

J(A, )
xh(A, )

~
A, ~. If the system has a point-group symme-

F, [Z] =
J d r & d r & p(r & )p (r & )J(r &

—r & )

=J d 2 j(A)&J d r v(r, A),

where r&, r& are on different sides of X, 2J(A) is the
interaction between two atoms separated by A, and

(re, Z) is the volume swept through by Z when it is
translated along —A. Equation (1) implies F, [Z] =g,
x J(A, )f„iA»d r h(r, A, ) which is

F, [Z] =Q, j(A, )(h(r, A, ))„tA ri„„t id r (2).
For systems where the average density of bonds over the
surface is identical to that in the bulk, i.e. ,
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try, the unit vectors A, can be grouped into disjoint sets
such that vectors in the same set transform among them-
selves under the group operations. By symmetry, the en-
ergies g(A, ) must be the same within each set, and ) (n)
becomes

) (n) =g„g '"'Q.
I A.'" (4)

where p labels the diAerent sets. In particular, if one as-
sumes only nearest-neighbor interactions between atoms,
there is only one such set in Eq. (4) and y(n) reduces to
the simple form

y(n) =g+. I A. nl. (5)

Surface energies of the form of Eq. (4) are known to
have cusps ' and will lead to equilibrium facets. For
crystals with a simple basis, it is well known that sur-
face energies are the form of Eq. (5). However, Eq. (4)
is a consequence of Eq. (3), which does not necessarily
imply LRPO. A bond-oriented glass satisfying Eq. (3),
referred to as a simple bond-oriented glass (SBOG), will

have facets.
It should be noted that Eq. (3) is sufficient but not

necessary for faceting. Since A is of atomic size, for
some systems the volume 0 (A, Z) may not be big
enough for the average (h(r, A))„(A &) to reach the bulk
value. However, PBOS's that do not satisfy Eq. (3) can
still have facets. The surface energy of these systems
will depend on the average normal n, as well as on the lo-
cation and the shape of the surface Z, i.e., y=y(n, Z).
The surface energy )(n) determining the equilibrium
shape is obtained by minimization of y(n, Z) within the
family of surfaces X, with specified average orientation

As shown in the next section, perfect quasicrystals
(QC's) and quasiglasses (QG's) are such systems.

(2) Surface energy for QC's and QG's with arbitrary
symmetry. —The QC's that we consider are 3D Penrose
lattices generated by the generalized dual method
(GDM) ' with atoms placed at the vertices of the tiles.
In the GDM, one considers N sets of equally spaced
planes [P„: r. k„=I„] normal to N vectors k„ in a
"dual" space (I„are integers, n=1 to N). The planes
P„partition the dual space into polyhedral regions, each
labeled by a set of N integers J„=[r k„], where [x] is

the integral part of x and r is any point in the polyhedral
region. The real-space quasilattice is given by Q„J„a„,
where the a„are the nearest-neighbor bonds in the bulk
and satisfy g„k„'a~ =6'~. As shown in the Appendix, the
surface energy density of this QC is

The applicability of Eq. (6) extends beyond the QC
structures. As shown in the Appendix, even when the
planes P„ in dual space are randomly instead of equally
spaced, with the effect of randomly flipping a large num-
ber of tiles in a perfect QC, the surface energies of the
resulting structures (QG's) are still given by Eq. (6).
The structures of a 2D QG and the corresponding QC
are depicted in Fig. 1. Numerical calculations of the
diffraction pattern of 2D QG's of different randomness
(for sizes up to 76000 tiles) show that their diffraction
peaks all have widths (unrelated to finite-size effects)
reflecting the loss in positional order.

While the surface energies of QG's have cusps, the
surfaces zo(r) for the T =0 facets have a height-dif-
ference correlation function w(r) =([zo(r+s)
—zo(s)] )„-r in both 2D and 3D, where (. . . )„. indi-
cates a spatial average over the surface. This random-

(a)

(b)

)(n)=J+„.In k„xk. I. (6)

If k„and hence a„are the vertex vectors of an icosahed-
ron, Eq. (6) says that even if the bonds in the bulk are
all along (a„), the vectors A, in Eq. (5) are of the form
a„xa, which are the edge vectors of an icosahedron.
The origin of this diff'erence can be traced back to the
fact that Eq. (3) is violated in this case (a fact that is

straightforward to verify by use of the GDM).

FIG. 1. (a) QG with 4. 1X10 tiles and randomness 6/D
=0.9, D being the mean spacing between parallel dual-space
lines, and 3, the spacing fluctuation. Only tiles generated by
one set of dual lines are shown. (h) Corresponding QC. The
flat surfaces are computer cuts, not facets.
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walk result can be shown both numerically and analyti-
cally. Now, surfaces with thermal average g(r) =([h(r
+s) —h(s)] ) —r in 2D or lnr in 3D, as r ~, are con-
ventionally' referred to as rough, where h(r) is the fluc-
tuation from the T=0 surface zo(r). The resolution to
the apparent contradiction between cusps in y(n) (pro-
ducing facets and implying positive step energies) and
the behavior of w(r) lies in the distinction between w(r)
and g(r). Indeed, g(r) measures thermal fluctuations,
and it is at the thermal roughening temperature TR,
where g(r) first diverges as r ~, that the step energy
vanishes (the associated facet shrinking to zero size')
and the surface loses its rigidity with respect to changes
in orientation. Because the T =0 step energy is positive,
we expect TR & 0 in 3D. In contrast, the behavior
w(r) —r has no connection to orientational rigidity,
merely reflecting the underlying system geometry. ' '

Further, the T =0 surface is flat in the sense that
[w(r)]'t2/r —0 as r - ~.

(3) Fciuilibrium and growth shapes. —The equilibri-
um shapes generated by the energies of Eqs. (5) and (6)
can be determined by the well-known Wulfl construc-
tion.

(a) SBOG's: The equilibrium shapes of Eq. (5) with
the bonds A, along the fivefold, twofold, and threefold
axes of an icosahedron are shown in Figs. 2(a), 2(b), and
2(c), respectively. Figure 2(a) is a triacontahedron.
Figure 2(b) is a great rhombicosidodecahedron. ' Fig-
ure 2(c) is a polyhedron with 90 rhombic faces which
come in two diAerent sizes.

(b) Perfect QC's and QG's: If the k„'s in Eq. (6) are
along the fivefold axes of an icosahedron, k„xk are
along the twofold axes, and the equilibrium shape is a
great rhombicosidodecahedron [Fig. 2(b)]. However, if
the k„'s are along the twofold axes, Eq. (6) takes the
form y(n) =Jk gz=, g " g, i

n. A," ~, where p = I, 2,
and 3 represents the set of vectors parallel to the fivefold,
twofold, and threefold axes of the icosahedron, and g

'

=5(sintr/5+sin2tt/5), g = I, g =3sintr/3. The re-
sulting equilibrium shape is shown in Fig. 2(d). It has
big twofold facets resembling those of a triacontahedron.
If the k„'s are along the threefold axes, Eq. (6) takes the
form y(n) =1k +2=, g " g, in A," ~, where the A, '

are along the twofold axes of an icosahedron, [A, j is a
set of 60 vectors which align with neither the fivefold nor
threefold axes, and g

' = —', , g =J8/3. The equilibri-
um shape is a complicated polyhedron shown in Fig. 2(e)

with the large threefold facets.
It can be shown from the Wulff construction and a

generalization of an observation of Herring that the
equilibrium shape generated by a surface energy of the
form of Eqs. (5) or (6) can never be an icosahedron or a
dodecahedron. However, in growth processes, these
shapes can be realized. This is because both inverse
growth rates and roughening temperatures' are propor-
tional to equilibrium facet sizes. Both roughening and
growth tend to eliminate smaller equilibrium facets. In
the case of a great rhombicosidodecahedron [Fig. 2(b)]
eliminating the twofold and threefold facets will turn it
into a dodecahedron. For the equilibrium shape depicted
in Fig. 2(d), expanding the largest facets at the expense
of all smaller ones will turn it into a triacontahe~ron. A
similar scenario applying to the shape in Fig. 2(e) will

turn it into a icosahedron.
The exact nature of the icosahedral phases remains

to be settled. Among the proposed models that have
claimed compatibility with the diAraction pattern and
the x-ray measurements are quasicrystals with frozen-in
disorder' and the random-packing model of Stephens
and Goldman' (a special kind of bond-oriented glass).
Both models call for positional disorder. As the particu-
lar packing scheme of Ref. 14 produces long cracks in

the bulk, it is relatively unlikely in a slow growth pro-
cess, where the bulk has more time to equilibrate. On
the other hand, it is entirely conceivable that other ran-
dom-packing schemes may produce a positionally disor-
dered PBOS which is free of such long cracks. Among
the systems we have considered, both SBOG's with
bonds along fivefold axes [Fig. 2(a)] and QG's with
bonds along twofold axes [Fig. 2(d)] can lead to a
triacontahedral growth shape. It is suggestive that
A16LiCu3 can be described by such structures. Likewise,
the dodecahedral grain shape in Al-Mn-Si can be ex-
plained by the growth of an SBOG with bonds along
twofold axes, or that of a QG with bonds along fivefold
axes.

Final remarks. —We have shown that facet formation
can occur in systems possessing long-range bond-
orientational order but lacking LRPO. Systems with
bond-orientational order can have the following weaker
version of positional order which seems essential for
faceting: The system is anisotropic and its atoms are or-
ganized into parallel (on the average) planes separated
by a minimum distance and which can be connected by

FIG. 2. The simplest equilibrium shapes of icosahedral PBOS's. See section (3) of text for details.
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steps with positive energies. The precise locations of
these planes or the atoms in them is apparently unimpor-
tant.

Appendix: Derivation of y(n) for QC's and QG's.—We first consider 3D perfect QC's with atoms placed
at the vertices of the tiles. The atoms interact with
neighbors connected by fa„1. In this derivation we show
that among the macroscopically flat surfaces with an
average normal n, the one with the lowest energy is a
surface Z(n) puckering up and down on a microscopic
scale about a plane normal to n. The surface energy of
Z(n) is proportional to the density of polygonal vertices
qd(n) on a plane Pd(tt) normal to n in dual space.
These vertices are produced by the intersections between
the different sets of planes P„and Pd(n), and t)d(ft)

I
tt k„xk

I . These conclusions follow from
the following observations: (i) Any surface Z in real
space has an image Xd in dual space, which is made up
of polygonal surfaces corresponding to the bonds cut in
real space. The number of bonds cut by Z is equal to the
number ofpolygons F on Zd. (ii) The number of polygo-
nal vertices V on Zd is half the number of polygonal
edges E, E =2V. Euler's theorem (F+ V —E =2) then
implies that F = V, since both V and F are macroscopic.
The number of cut bonds of X is the same as the number
of vertices on Zd. (iii) The surfaces Xd with the lowest
density of polygonal vertices are the planes P„. Surfaces
Zd(n) with the lowest density of V and an average nor-
mal n can be constructed by the piecing together of seg-
ments of different planes P„In other . words, Zd(n) is a
surface puckering up and down about the plane Pd(n)
normal to n. It is easy to see that both Xd(n) and P(n)
have the same V, and the density of V on Xd(n) (per unit
projected area) is

(iv) The real-space image Z(ft) of Xd(ft) is a surface
made up of the faces of tiles. The total oriented area of
Z(n) associated with a large projected area Sd of Xd(n)
(or area in P„) is

S(n) =g„) a„xa t)(n)„Sd sgn(n k„xk ) =ftSd,

with use of the relation g„k„'a„=6'~. Thus, X(n) is also
a surface puckering about a plane normal to n, and the
length scales of the real space and the dual space are
identical. This implies that the density of cut bonds per
unit (projected) area of Z(n) is identical to rid(n), and
hence Eq. (6). Similar calculation shows that y(n)
=JR Inxk„ I

in 2D.
It is important to note that the number of intersections

of the planes P„with Pd (n) and hence the number of po-
lygonal vertices on Pd(n) is unaffected by the change in
spacing between the planes P„. The relation between the
length scales in the real and dual spaces in this case
is S(n) =Sdtt+0( JSd). This correction to the length
scale does not alter the number of cut bonds per unit

area. Hence the real-space structure generated by N sets
of randomly spaced planes P„(i.e. , a QG) will have the
same surface energy as a perfect QC. Similar calcula-
tion shows that the surface energy of QC's with bonds
normal to the tile faces is also given by Eq. (6).
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