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The theory of analog pion double charge exchange on semimagic even-even nuclei is examined from
the point of view of the nuclear shell model. It is shown that the amplitude for the reaction can be ex-
pressed as the sum of two independent functions for an entire shell. A more general relation is also dis-
cussed which is true for any shell in which the generalized seniority scheme is valid.
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The pion-nucleus double-charge-exchange (DCX) re-
action has been recognized for many years as a useful
tool for studying nucleon-nucleon correlations because of
its nature of inherently involving (at least) two nucleons.
Early calculations neglected any such correlations and,
while they were reasonably successful at high pion ener-
gies (above the 3-3 resonance), they were unable to ex-
plain the data in the (3,3) region.'

There are at present several outstanding problems.
The one most directly addressed by this Letter is the
variation of the DCX cross section to the double isobaric
analog state (DIAS) with the number of excess neutrons
in a given shell. The most naive expectation based on
the assumption that the nuclear ground-state wave func-
tion describes a state of independent particles is that the
cross section should vary as the total number of excess
neutron pairs in the shell; n(n—1)/2, where n=N—Z.
Measurements of DCX for the calcium isotopes in the
resonance region showed this not to be the case, with the
48Ca/*2Ca ratio being =6 instead of the 28 expected
and the **Ca/**Ca ratio being about 1 instead of the 6
expected.? The analysis of this phenomenon in the reso-
nance region is complicated by the fact that distortion
effects are very important, multinucleon processes may
be important, and even multi-A processes may play a
role.?

Recent data at low energy have shown that this expec-
tation is even more strongly violated at low energies,
where these uncertainties in the reaction mechanisms are
expected to be much less severe. This leads us to believe
that the answer to the problem lies in the nuclear struc-
ture. Indeed, recently Bleszynsky and Glauber? have
shown that there are significant shell-model corrections
for DCX on *¥Ca. The principal result reported here is
an expression for the cross section for DCX to the DIAS
as a function of the number of excess neutrons for any
shell-model orbit j, under the assumption that only two-
body processes are important. The remarkable feature
of the expression is that no more than two amplitudes

are involved regardless of the size of the shell. One of
these amplitudes corresponds to monopole transitions
through intermediate nuclear states and alone would give
the same result as previously calculated.! This is the
term to survive in the limit of an independent-particle
wave function. The second amplitude vanishes in the un-
correlated limit and so we identify it as a measure of the
correlated part of the shell-model wave function.

Another problem in pion DCX is that of the angular
distribution in the resonance region. There, a two-am-
plitude model has been suggested as a solution to the
problem of the minimum which is observed experimen-
tally to occur at too small an angle to be a purely
diffractive phenomenon.> We note that the two ampli-
tudes which naturally arise in the present work provide
such a system. The amplitude corresponding to uncorre-
lated nucleons is the same in the present work and in
Ref. 5. The second amplitude is assigned there to the
core, whereas our second amplitude comes purely from
transitions within the valence neutrons.

In order to obtain the desired relation, we consider the
reaction to be caused by a two-body operator between
two identical (in the same isospin multiplet) 0" states.
Thus we need to calculate the matrix element for the
transition:

M=<0+|Zi'j9,-j(r,-,rj,k,k')|0+>. (1)

The |0%) denotes the ground state. The rwo-body tran-
sition operator 0, contains, of course, all the depen-
dence of the reaction mechanism and is a function of en-
ergy and momenta of the incoming k and outgoing k'
pion waves, in addition to the dependence on the coordi-
nates of the two nucleons involved in the charge-
exchange process. The 6,, operator is, in general, com-
plex. In the framework of the shell model, one can write
matrix elements for a many-body wave function in terms
of two-body matrix elements if the operator is a sum of
two-body terms. These shell-model techniques were ap-
plied extensively in the calculation of energy levels and
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are well known.® We shall apply some of these tech-
niques to the DCX.

Take the simple case when the shell-model state is de-
scribed by a single j” configuration of identical particles
coupled to total angular momentum J =07 and seniority
v=0. In this case, the diagonal matrix element (for even
n) is given by®

Gme=0,J=0%[36;|;"v=0J=0")
=3n(n—1a+ tng, ()

where a and B are constants independent of n. This
strikingly simple formula holds for any two-body ¥ 6;;
interaction. The DCX transition operator is not neces-
sarily, of course, a scalar in space; however, for matrix
elements involving a transition from a J=0% to J=07
state only the scalar part of 8, survives and one can use
Eq. (2) to calculate the DCX. In calculating the DCX
cross section, one has to take into account the fact that
we go from the ground state (g.s.) to the DIAS, ie.,
from T =T to T =T —2. This introduces an addition-
al factor [n(n—1)/2]1 2 in the amplitude. The DCX
cross section is then

opex(@)=+nn—1)|a+B/(n—1)|2 3)

This formula is remarkable in its simplicity. The DCX
cross section to the DIAS contains now two, and in the
case of a pure ;" configuration only two, amplitudes.
The first one represents transitions which occur in the
absence of shell-model correlations in the nuclear wave
function. The cross section due to this term is simply
proportional to the number of neutron pairs to be made
into pairs of protons when going from the ground state to
the DIAS. This counting rule is independent of the mu-
tual location of the two nucleons in each pair, and there-
fore this term will dominate the cross section if the tran-

21
(Ghe=0,J=0"|X06;|jv=0J=0") =3 fiF (kk"),

L=0

L 11
{, ..}Cé%{)
72 JJ

where ¢ is the radial wave function of the j orbit. The
constants f; are composed of 3j, 6j, and fractional
parentage coefficients. Not surprisingly, in view of Eq.
(2), one finds after performing all the algebra that only
two combinations of F; appear in the above matrix ele-
ments for all the seniority-zero j” (n=2,4,...) states.
These are the monopole Fo (we will denote it as 4) and
the sum of all higher multipoles with unit coefficient,
B=3,-.0F.. One can connect Egs. (3) and (4) by
making the identification

A=a+[2/2j+1)18, B=[2j—1)/(2j+1)]1B, (5)

and arrive at a closed expression for the DCX cross sec-

where

FLk k) = Qr+1)Q2j+1)
4r

sition DCX operator is of long range. In the case of a
transition operator which is constant (over the volume of
the nucleus), only this term will contribute. (Note, how-
ever, that a short-range interaction will contribute also to
the a term.) The second term, proportional to B, is a
new term that did not receive much attention in the past.
It represents DCX transitions which take place when the
nuclear wave function is more than just that of indepen-
dent particles. The shell-model state in the seniority
scheme has a correlated wave function formed by the
combination of pairs of nucleons coupled to J=0%.
Each time such a pair is added, one has to antisym-
metrize the wave function. The B term will contribute
when the DCX transition operator is of short range. By
examining Eq. (3), one sees that the relative contribution
of the pairing term is largest when »n is the smallest, i.e.,
when n=2 or, equivalently, T=1. As one increases the
number of excess neutrons, the field effects, represented
by the parameter a, become more important in compar-
ison with the two-body pairing term represented by
B/(n—1). If one prefers to discuss the DCX reaction in
terms of a sequential process, the term proportional to a
corresponds to the transition in which the intermediate
state is the single isobaric analog state (IAS), while the
second term in Eq. (3) would correspond in the case of
sequential transitions to processes in which the interme-
diate states are nonanalog states.

The expression in Eq. (3) can explain a substantial
amount of experimental findings which seem puzzling.
Before proceeding with the application of this two-am-
plitude expression, we will rewrite it in a different form
so as to be able to compute the coefficients a and B in
terms of the radial wave function of the orbit j. With
use of standard techniques of the shell model,® one may
for a single j” configuration write the matrix element in
Eq. (1) as

(4)

2
fd3r|d3r22 Y @)Y ()07 (r1) 97 (r2) 015(r 1,12k k),

tion to the DIAS for the case of a pure j" configuration
of identical particles and lowest seniority v =0:
(n—1) (2j+3—2n)
(o)== A+
Ibex 2 h—DQ—1D"|"

(6)

where 4 and B are, in general, complex and dependent
on the scattering angle 6 and the pion energy. This is
the central result of our work. This formula is more gen-
eral than its derivation and holds also for spin-dependent
interactions, but then 4 and B are not given anymore by
Eq. (4). We deal therefore with a three-parameter prob-
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lem, the absolute values | 4| and |B|, and a phase ¢
between them.

In Table I, expressions are written for the DXC cross
section for *2Ca, **Ca, %°Ca, and **Ca. One notes the
following properties of Eq. (6) and the expressions in
Table I. The contribution of the correlation term B is
the largest in the n=2 (i.e., T=1) nuclei. As one goes
to the heavier Ca isotopes, one finds that the contribution
of the term declines and the (N —Z) (N—Z —1) behav-
ior is violated in these nuclei to a lesser extent. This fact
explains why the T=1 nuclei had the unexpectedly large
value of opcyx, at low energy.7 Explicit calculations® of
|A| and |B| for energies T,=35 MeV show that the
ratio |B|/| A|=3.9. For energies around and immedi-
ately above the resonance this ratio declines to about 1.
This behavior of the ratio of |B |/ | A| can be presently
understood® theoretically in terms of the behavior of the
nN amplitudes. A fit to the forward-angle, low-energy
(z*,77) data® for **Ca, **Ca, and *®Ca, with the ex-
pression in Table I, gives | 4| =0.33 (ub/sr)'?, |B|
=1.25 (ub/sr)2 and ¢=66°. This compares reason-
ably well with the impulse-approximation computations
of Ref. 8, where after using Eq. (4) one finds | 4| =0.2
(ub/st) V2 | B| =0.8 (ub/sr) /2 and ¢ =71°.

The fact that the expression in Eq. (6) contains two
amplitudes leads to several coherence effects observed
experimentally. For example, shifts in the angular distri-
butions of opcx with respect to the predictions of an
IAS-dominated sequential model are due to the interfer-
ence between the 4 and B amplitudes. We present two
predictions concerning such effects. The first deals with
the problem of the minimum in the angular distribution
mentioned before. If in “?Ca (and other nuclei) the for-
ward position of the first minimum? is caused by the in-
terference of the amplitudes A4 and B defined here, then
the effect should be much smaller in the rest of the shell
because the contribution of B is much less. In fact, the
minimum in “8Ca would be shifted to /arger angles rela-
tive to *?Ca as in the predictions of the model that in-
volves only the A4 term. The second general prediction
follows from the observation in the table that only the
two-neutron case in **Ca has the full strength for the B
term. Thus, for the neutron numbers larger than two
[especially for the larger values of j as seen in Eq. (6)],
the characteristics of A4 should dominate. Since these
have been calculated many times'® we know that these

TABLE I. DCX cross sections for the even Ca isotopes that
arise from the formula in Eq. (6) in the text.

Nucleus oDpCX
2Ca |lA+B]|2
4Ca 6|lA+ B2
46Ca 15|4— 5 B|?
48Ca 28| 4A— +B|?
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cross sections should show a monotonic rise above 50
MeV, contrary to what is observed for the 7T=1 DCX
reaction. In fact, there has been one 7> 1 reaction stud-
ied!" (*°Fe), and the energy dependence is in good
agreement with this prediction.

We note that, while Eq. (6) holds for a pure-j shell,
one can also obtain relations among cross sections be-
cause of the fact that Eq. (2) holds also for quasispin
formulations of the shell model.!? Also, for the general-
ized seniority scheme,'® one can apply the above formal-
ism for DCX transitions. With abandonment of the at-
tempt to relate @ and B to 4 and B [Eq. (5)], there still
exist relationships between cross sections. For example,
labeling the cross section o(E,0) for n neutrons outside
a closed shell by o,, we have

708 —200¢+1204—40,=0 @)

[this relation is valid with distortion effects included but
will be broken by the variation of distortions across the
shell, by Q-value differences, and by three- (or higher-)
step processes]. The Ni isotopes are well described in
the framework of a generalized seniority scheme,!® and
an attempt should be made to measure the pion DCX re-
action for the even Ni isotopes.

In conclusion, we have demonstrated in this work that
only when the shell-model correlations in the nuclear
wave function are taken into account can one explain the
low-energy DCX data. The large discrepancies between
experiment and previous theories were a result of
neglecting such correlations.

A more general conclusion can be drawn from the suc-
cess of the theory presented above. What this work
shows is that the DCX reaction is sensitive to correla-
tions in the initial and final states. In order to be able to
reproduce the DCX cross sections, one must take into ac-
count details of the shell-model wave function, including
configuration mixing, and not limit ourselves, as far as
nuclear structure goes, to a description of nuclear states
in terms of an independent-particle model. The hope
that we had some 25 years ago, that the pion DCX reac-
tion will provide information about two-body correlations
in nuclei, seems to be indeed fulfilled.

Our work points also to a possibly new direction in the
exploration of the DCX reaction. It shows that the
method of effective interactions, applied in the past to
energy levels,® can also be used in the analysis of the
DCX results in terms of effective two-body transition
operators. We believe that a substantial body of existing
data and of data to come out of future experiments will
be analyzed in terms of such a theory. A comparison be-
tween the deduced “empirical,” effective two-body DCX
transition matrix elements and the ones calculated in the
framework of a distorted-wave impulse approximation
or coupled-channels theory will be able to tell us more
about the importance of the truly short-range correla-
tions in nuclei.
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