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(I&z I)Mc= gt J.
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(2)

To show the consequences of these two diff'erent

definitions, Eq. (2) has been evaluated numerically for a
Gaussian, which is exact for d =2 in the large-L limit. A
width of 20L'~ is used (see Fig. 1). The dots represent
Eq. (2) and the dashed line is the predictions of Refs. 1

and 2 with a slope of —,', fitted to the data at small L.
The truncation is not expected to be important in the
small-L limit and this is confirmed in Fig. 1. Deviations
of the results with and without truncations become no-
ticeable above L =5 and increase with L. Note that for
large L (the limit for which the analytic results are val-

id), the analytic results without truncations do not even
describe the correct trends of the results with trunca-
tion s.

The data between L =7 to 100 can be roughly htted

Mon Replies: The analytic results' technically need not
be exact for arbitrary dimension, comparisons with the
simulations3 are erroneous, and the bound (D ~ d) does
not apply for solid-on-solid lattice models.

(1) The analytic results' consider a subset of the
original height variables on sites that form a regular lat-
tice with lattice constant L. The "analytic" excess area
density is 2, (L ) =L '(

I hz 1)„with hz = h (0) —h (L ).
With the assumption (1hz 1),=aL ' with a&0,
A, (L) =L ' and D, (d) =d —Y, (d) follow. The
Y, were from scaling results ' assuming ( I hz I ),= ((hz) ),'~, where ((hz) )'~z= bL ' for large L, with
b &0. L, =

& and 0 for d=2 and 3, respectively. This
actually obeys a Schwartz inequality, ( I hz I ),
~((hz)')'~' aL '~bL ' and 0&ash ~L .
Since L must be large for scaling to hold, Y, (L, or
Y, =L . For d =2, Y, =L, follows from exact re-
sults, ' but for d =3, nothing rigorous is known.

(2) The analytic calculations do not include the im-

portant feature that the column height differences in the
simulations are measured in units of L. This neglect
contributes to the disagreement between the analytic re-
sults and the simulations. Consider the distribution
Pz ( I hz I ) and note that the analytic results assume

I hz I &z ( I bz I )d I hz I, (1)

but the simulations measure I hz I
in units of L. This in-

troduces truncations
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FIG. 1. A comparison of the scaling properties for ( I hz I
&

between the predictions of Refs. 1 and 2 (dashed line) and nu-

merical solution of Eq. (2) (dots) for d =2 (see text).
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with a slope of 0.408 (solid line in Fig. 1), consistent
with the Monte Carlo results of 0.42+ 0.06. The small
L (&7) data do deviate from scaling, in contrast to the
simulations. This may be attributed to the inaccuracy of
the Gaussian approximation for small L. The large-L
deviations from scaling are clearly present in both the
simulations and Eq. (2), but absent in the predictions of
Refs. 1 and 2. This supports the simulations; details will

be considered elsewhere.
(3) The bound D ~ d does not apply here. The sim-

plest reason is that a solid-on-solid lattice model is highly
anisotropic.
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