Mon Replies: The analytic results^{1,2} technically need not be exact for arbitrary dimension, comparisons with the simulations³ are erroneous, and the bound $(D \le d)$ does not apply for solid-on-solid lattice models.

(1) The analytic results^{1,2} consider a subset of the original height variables on sites that form a regular lattice with lattice constant L . The "analytic" excess area density is $A_a(L) \approx L^{-1} \langle h_L | \rangle_a$, with $h_{\underline{L}} = h(0) - h(L)$. With the assumption $\langle |h_L| \rangle_a \approx aL^{\overline{Y}_a}$ with $a > 0$, $A_a(L) \approx L^{- (1 - Y_a)}$ and $D_a(d) = d - Y_a(d)$ follow. The Y_a were from scaling results ' Y_a were from scaling results^{1,2} assuming $\langle |h_L| \rangle_a$
 $\approx \langle (h_L)^2 \rangle_a^{1/2}$, where $\langle (h_L)^2 \rangle^{1/2} \approx bL^{X_a}$ for large L, with $b > 0$. $X_a = \frac{1}{2}$ and 0 for $d = 2$ and 3, respectively. This actually obeys a Schwartz inequality, $\langle |h_L| \rangle_a$ nctually obeys a Schwartz inequality, $\langle h_L \rangle_{a/2}^{1/2}$, $aL^{Y_a} \leq bL^{X_a}$, and $0 < a/b \leq L^{X_a}$. Since L must be large for scaling to hold, $Y_a < X_a$ or $Y_a = X_a$. For $d = 2$, $Y_a = X_a$ follows from exact results, '² but for $d = 3$, nothing rigorous is known.

(2) The analytic calculations do not include the important feature that the column height differences in the simulations are measured in units of L . This neglect contributes to the disagreement between the analytic results and the simulations. Consider the distribution $P_L(\vert h_L \vert)$ and note that the analytic results assume

$$
\langle |h_L| \rangle_a = \int_0^\infty |h_L| P_L(|h_L|) d |h_L|, \tag{1}
$$

but the simulations measure $|h_L|$ in units of L. This introduces truncations

$$
\langle |h_L| \rangle_{\text{MC}} = \sum_{i=1}^{\infty} i \int_{iL}^{(i+1)L} L P_L(|h_L|) d |h_L|.
$$
 (2)

To show the consequences of these two different definitions, Eq. (2) has been evaluated numerically for a Gaussian, which is exact for $d = 2$ in the large-L limit. A width of $20L^{1/2}$ is used (see Fig. 1). The dots represent Eq. (2) and the dashed line is the predictions of Refs. ¹ and 2 with a slope of $\frac{1}{2}$, fitted to the data at small L. The truncation is not expected to be important in the small-L limit and this is confirmed in Fig. 1. Deviations of the results with and without truncations become noticeable above $L = 5$ and increase with L. Note that for large L (the limit for which the analytic results are valid), the analytic results without truncations do not even describe the correct trends of the results with truncations.

The data between $L = 7$ to 100 can be roughly fitted

FIG. 1. A comparison of the scaling properties for $\langle |h_L| \rangle$ between the predictions of Refs. ¹ and 2 (dashed line) and numerical solution of Eq. (2) (dots) for $d = 2$ (see text).

with a slope of 0.408 (solid line in Fig. 1), consistent with the Monte Carlo results of 0.42 ± 0.06 . The small L (<7) data do deviate from scaling, in contrast to the simulations. This may be attributed to the inaccuracy of the Gaussian approximation for small L . The large- L deviations from scaling are clearly present in both the simulations and Eq. (2), but absent in the predictions of Refs. ¹ and 2. This supports the simulations; details will be considered elsewhere.

(3) The bound $D \le d$ does not apply here. The simplest reason is that a solid-on-solid lattice model is highly anisotropic.

This research was supported in part by a ACMC Faculty Fellowship; I have benefited from discussion with Dr. S. Wansleben.

K. K. Mon Center for Simulational Physics University of Georgia Athens, Georgia 30602

Received 23 September 1986 PACS numbers: 68.35.Fx, 64.60.Ak, 68.35.Bs, 73.40.—^c

'P.-z. Wong, J. Howard, and J.-S. Lin, Phys. Rev. Lett. 57, 637 (1986); P.-z. Wong and A. J. Bray, second preceding Comment [Phys. Rev. Lett. 59, 1057 (1987)].

²T. W. Burkhardt, preceding Comment [Phys. Rev. Lett. 59, 1058 (1987)1.

3K. K. Mon, Phys. Rev. Lett. 57, 866, 1963(E) (1986).