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Scaling of the Excess Area of Interfaces

In the recent Monte Carlo results of Mon,! the excess
area density Apmc(L) of rough solid-on-solid interfaces
in d=2 and 3 bulk dimensions measured on a length
scale L was found to vary as

Amc(L)~L ~x@) (1)

with x(2)=0.58 £0.06 and x(3)=1.25+0.05. Here I
argue that for L>1 and Apmc(L)>1 the exact ex-
ponents? are x(2)=% and x(3)=1, and that for
Amc(L) <1, Amc(L) decreases with increasing L faster
than the power law (1).

In general dimension d, the excess area density, is
given by A()=(d—1){|ho—h,|). Here the h; are
height variables defined on a 4 —1 dimensional hypercu-
bic lattice with lattice constant /. The subscripts 0 and 1
denote the neighboring sites.

Now consider the interface defined by a subset of the
original height variables on sites that form a hypercubic
lattice with lattice constant L. The excess area density
A(L) of this interface is given by

AWL)=d—1)L "X ho—h ). )

Sites 0 and L are separated by L original lattice con-
stants but are neighboring sites on the coarse-grained
lattice. For rough interfaces

(lho—hy |)~((hg—h ) D'?

L(3—d)/2, d<3,
~ 12 5= (3)
(nL) "% d=3,
for L>>1, as follows from the capillary-wave picture. 3.4
Combining Egs. (2) and (3) gives
L —(d-1)/2 d<3
- _ ) s 4
AL~ ~1gap) 12, d=3, @)

In Ref. 1 Amc(L) was not determined from the origi-
nal height variables like A(L) in Eq. (2) but from
coarse-grained heights restricted to integer multiples of
L. There are two distinct regimes in which Apc(L) and
A(L) can be simply compared.

In regime I (| Ag—hy |)>L or A(L)>1. For typical
interface configurations | ho—#; | is so large in compar-
ison with L that the excess area density is insensitive to
the coarse graining of the heights, and Apc(L)=A(L).
Much of the Monte Carlo data in Figs. 1 and 2 of Ref. |
satisfies Amc(L)>1, L>1. Thus, it is appropriate to
compare these data with Eq. (4), or equivalently, with
Eq. (1) where x(d) =% (d —1).

In regime II ¢ |ho—hy |)<L or A(L)<1. Since
Amc(L), unlike 4 (L), is exclusively determined by fluc-
tuations with |ho—#h, | of the order of L or larger and
such fluctuations are rare in regime 11, Amc(L) < A(L).
In the large-L limit Apc(L) approaches zero more rap-
idly> than a power law. The downward deviation with
increasing L of the data in Figs. 1 and 2 of Ref. 1 from
the straight-line fits has a natural explanation in terms of
the two regimes Amc(L)>1 and Apmc(L) < 1.
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in the limit L — oo with fixed interface stiffness K (Ref. 1).
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