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Scaling of the Excess Area of Interfaces

A (L) =(d —1)L '(
i hp —h, ~

). (2)

In the recent Monte Carlo results of Mon, ' the excess
area density AMc(L) of rough solid-on-solid interfaces
in d=2 and 3 bulk dimensions measured on a length
scale L was found to vary as

A«(L) —L --'»,

with x(2) =0.58+ 0.06 and x(3) =1.25 ~0.05. Here I
argue that for L&)1 and AMc(L))&1 the exact ex-
ponents are x (2) = —,

' and x (3 ) = 1, and that for
AMc(L) « 1, A Mc(L) decreases with increasing L faster
than the power law (1).

In general dimension d, the excess area density, is

given by A(l) =(d —1)(
~ hp —h 1 ~

). Here the h; are
height variables defined on a d —1 dimensional hypercu-
bic lattice with lattice constant l. The subscripts 0 and 1

denote the neighboring sites.
Now consider the interface defined by a subset of the

original height variables on sites that form a hypercubic
lattice with lattice constant L. The excess area density
A(L) of this interface is given by

In regime I (~hp hi ))&L or A(L))&1. For typical
interface configurations hp —hr ~

is so large in compar-
ison with L that the excess area density is insensitive to
the coarse graining of the heights, and AMc(L) =A(L).
Much of the Monte Carlo data in Figs. 1 and 2 of Ref. 1

satisfies AMc(L) »1, L»1. Thus, it is appropriate to
compare these data with Eq. (4), or equivalently, with
Eq. (1) where x (d ) = —,

' (d —
1 ).

In regime II (
~ hp —hl ~) &&L or A(L) &&1. Since

AMc(L), unlike A(L), is exclusively determined by fluc-
tuations with

~
hp —hr ~

of the order of L or larger and
such fluctuations are rare in regime II, AMc(L) «A(L).
In the large-L limit AMc(L) approaches zero more rap-
idly than a power law. The downward deviation with
increasing L of the data in Figs. 1 and 2 of Ref. 1 from
the straight-line fits has a natural explanation in terms of
the two regimes AMc(L) »1 and AMc(L) « l.
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Sites 0 and L are separated by L original lattice con-
stants but are neighboring sites on the coarse-grained
lattice. For rough interfaces
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(~hp hl ~) ((hp hl )

L(3 —d)/2 d ( 3

(]nL) '~'

for L)) 1, as follows from the capillary-wave picture.
Combining Eqs. (2) and (3) gives

L
—(d —1)/2

L -'(lnL) '"

(3)

'K. K. Mon, Phys. Rev. Lett. 57, 866, 1963(E) (1986).
2After completion of this work I learned that similar results

have been obtained by P.-z. Wong, J. Howard, and J.-S. Lin,
Phys. Rev. Lett. 57, 637 (1986).

F. P. Bufl, R. A. Lovett, and F. H. Stillinger, Jr. , Phys. Rev.
Lett. 15, 621 (1965).

4D. Jasnow, Rep. Prog. Phys. 47, 1059 (1984), and refer-
ences therein.

5In d=2, from the exact distribution of the variable ho —hl
[see P.-z. Wong and A. J. Bray, preceding Comment [Phys.
Rev. Lett. 59, 1057 (1987)]], it follows that

In Ref. 1 AMc(L) was not determined from the origi-
nal height variables like A(L) in Eq. (2) but from
coarse-grained heights restricted to integer multiples of
L. There are two distinct regimes in which AMc(L) and

A(L) can be simply compared.

AMc(L) —L ' exp[ —Lsinh'(K/2)]

in the limit L ~ with fixed interface stiflness K (Ref. I).
Since interface fluctuations are weaker in higher dimensions,
for d ) 2 one also expects AMc(L) to tend to zero faster than a
power law in the limit I
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