Scaling of the Excess Area of Interfaces

In the recent Monte Carlo results of Mon,¹ the excess area density $A_{MC}(L)$ of rough solid-on-solid interfaces in $d=2$ and 3 bulk dimensions measured on a length scale L was found to vary as

$$
A_{\rm MC}(L) \sim L^{-x(d)},\tag{1}
$$

with $x(2) = 0.58 \pm 0.06$ and $x(3) = 1.25 \pm 0.05$. Here I argue that for $L \gg 1$ and $A_{MC}(L) \gg 1$ the exact exponents² are $x(2) = \frac{1}{2}$ and $x(3) = 1$, and that for $A_{MC}(L) \ll 1$, $A_{MC}(L)$ decreases with increasing L faster than the power law (1).

In general dimension d , the excess area density, is given by $\tilde{A}(l) = (d-1)\langle |h_0 - h_1| \rangle$. Here the h_i are height variables defined on a $d-1$ dimensional hypercubic lattice with lattice constant *l*. The subscripts 0 and 1 denote the neighboring sites.

Now consider the interface defined by a subset of the original height variables on sites that form a hypercubic lattice with lattice constant L . The excess area density $A(L)$ of this interface is given by

$$
\tilde{A}(L) = (d-1)L^{-1}\langle |h_0 - h_L| \rangle. \tag{2}
$$

Sites 0 and L are separated by L original lattice constants but are neighboring sites on the coarse-grained lattice. For rough interfaces

$$
\langle |h_0 - h_L| \rangle \sim \langle (h_0 - h_L)^2 \rangle^{1/2}
$$

$$
\sim \begin{cases} L^{(3-d)/2}, & d < 3, \\ (\ln L)^{1/2}, & d = 3, \end{cases}
$$
 (3)

for $L \gg 1$, as follows from the capillary-wave picture.^{3,4} Combining Eqs. (2) and (3) gives

$$
\tilde{A}(L) \sim \begin{cases} L^{-(d-1)/2}, & d < 3, \\ L^{-1}(\ln L)^{1/2}, & d = 3. \end{cases}
$$
 (4)

In Ref. 1 $A_{MC}(L)$ was not determined from the original height variables like $\tilde{A}(L)$ in Eq. (2) but from coarse-grained heights restricted to integer multiples of L. There are two distinct regimes in which $A_{MC}(L)$ and $\tilde{A}(L)$ can be simply compared.

In regime $I \langle |h_0 - h_L| \rangle \gg L$ or $\tilde{A}(L) \gg 1$. For typical in regime $\Gamma \setminus [n_0 - n_L] \geq E$ or $A(E) \gg 1$. For typical
nterface configurations $|h_0 - h_L|$ is so large in comparison with L that the excess area density is insensitive to the coarse graining of the heights, and $A_{MC}(L) \cong \tilde{A}(L)$. Much of the Monte Carlo data in Figs. ¹ and 2 of Ref. ¹ satisfies $A_{MC}(L) \gg 1$, $L \gg 1$. Thus, it is appropriate to compare these data with Eq. (4), or equivalently, with Eq. (1) where $x(d) = \frac{1}{2}(d-1)$.

In regime II $\langle |h_0 - h_L| \rangle \ll L$ or $\tilde{A}(L) \ll 1$. Since $A_{MC}(L)$, unlike $\tilde{A}(L)$, is exclusively determined by fluctuations with $|h_0 - h_L|$ of the order of L or larger and such fluctuations are rare in regime II, $A_{MC}(L) \ll \tilde{A}(L)$. In the large-L limit $A_{MC}(L)$ approaches zero more rapidly⁵ than a power law. The downward deviation with increasing L of the data in Figs. 1 and 2 of Ref. 1 from the straight-line fits has a natural explanation in terms of the two regimes $A_{MC}(L) \gg 1$ and $A_{MC}(L) \ll 1$.

I thank T. Ala-Nissila, A. J. Bray, D. Forster, D. Stauffer, and P. Z. Wong for helpful discussions.

Theodore W. Burkhardt Department of Physics Temple University Philadelphia, Pennsylvania 19122

Received 4 September 1986

PACS numbers: 68.35.Fx, 64.60.Ak, 68.35.Bs, 73.40.—^c

¹K. K. Mon, Phys. Rev. Lett. 57, 866, 1963(E) (1986).

²After completion of this work I learned that similar results have been obtained by P.-z. Wong, J. Howard, and J.-S. Lin, Phys. Rev. Lett. 57, 637 (1986).

 ${}^{3}F.$ P. Buff, R. A. Lovett, and F. H. Stillinger, Jr., Phys. Rev. Lett. 15, 621 (1965).

 $4D.$ Jasnow, Rep. Prog. Phys. 47, 1059 (1984), and references therein.

⁵In $d=2$, from the exact distribution of the variable $h_0 - h_L$ [see P.-z. Wong and A. J. Bray, preceding Comment [Phys. Rev. Lett. 59, 1057 (1987)]}, it follows that

 $4_{MC}(L)$ – $L^{-1/2}$ exp[– L sinh²(K/2)]

in the limit $L \rightarrow \infty$ with fixed interface stiffness K (Ref. 1). Since interface fluctuations are weaker in higher dimensions, for $d > 2$ one also expects $A_{MC}(L)$ to tend to zero faster than a power law in the limit $L \rightarrow \infty$.