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Fractal Dimension of Rough Surfaces in the Solid-
on-Solid Model

A recent Letter by Mon ' reported Monte Carlo
simulations of rough surfaces in the solid-on-solid (SOS)
model for spatial dimensions d =2 and 3. The aim of
the work is to determine the fractal dimension D of these
surfaces. His numerical data show that the excess sur-
face area A measured with a length resolution L has
a power-law dependence 8 (L ) =L ', where' D
=1.58+ 0.06 for d =2 and D=3.25 ~0.05 for d =3.
The purpose of this Comment is to point out that this
problem has recently been studied by another method
and diA'erent results obtained. '

The SOS model is inherently anisotropic because
there are only vertical fluctuations above a Oat basal
p1ane. In the rough phase, the vertical root-mean-square
width of the interface, w, diverges with increasing length
L in the basal plane as a power law:

w =b(L/b)".

The characteristic length b defines a crossover length,
because when L =b, then w =L. Such surfaces have
diAerent rescaling factors along diAerent spatial direc-
tions and are called self aft ne fracta-ls, as opposed to
self similar fracta-ls, which are isotropic. The fractal di-
mension is given by ' D =d —x. This is due to the fact
that the excess surface area on length scale L can be es-
timated as

By the central-limit theorem, the distribution P(hL, ) of
the variable hL —=h; —h;+L =g'+, 'n~ approaches for
large L a Gaussian form with standard deviation
w=(h )' =L't (n )' Thus, x= —,

' for d=2. For
d =3, the result w —(lnL) 't, i.e. , x =0, follows from the
properties of the two-dimensional LV model in the low-
temperature phase.

Mon's result for d =2 is consistent with these analytic
predictions, but there is a larger discrepancy for d=3.
In particular, the latter result violates the inequality
D ~ d that follows from Eq. (I): x cannot be less than
zero because physical Auctuations increase with increas-
ing distance.

Our analytic considerations diAer from Mon s numeri-
cal calculation in two technical respects. First, he calcu-
lated (

~ hL, ~
) instead of (hL) ' . We believe this has no

eAect on x or D for the following reason. %'e have
shown that, for d =2, P(hL) has the scaling form
P(ht. ) =L 'g(hLL "), with x = —,'. This should hold
for other dimensions, with diAerent values of x, so that
(

~
hL

~
) and (hL)'l both scale as L . Second, the height

diAerence calculated by Mon is rounded oA according to
the resolution L. As a result, his measured area is al-
ways less than the true area. The diA'erence increases
with increasing L, which tends to give a larger value
for D.
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where Ao is the area of the basal plane above which Auc-

tuations occur. Note that for L«b, A(L) »Ao. The
identification of the exponent x —

1 with d —1 —D gives
D =d —x. Note also, from Eq. (2), that for L)) b the
surface becomes effectively smooth, since 2 (L) «AQ.

It is well established theoretically that the SOS model
has x =

2 (3 —d) for d ~ 3, with w —(lnL) 't for d
=3. Hence x =

2 and 0 for d =2 and 3, respectively,
which implies D =

2 for d =2 and D =3 for d =3. The
d=2 result is exact and easily derived. A completely
general SOS model in d =2 has energy F. given

by E/kaT=K+, f(~ h; —h;+~ ~ ), where the "column
heights" lh;j are integers and f(x) is an arbitrary func-
tion. For "free" boundary conditions (periodic boundary
conditions are only slightly more complicated, and the
final result is the same) the model is solved by the intro-
duction of the diAerence variables n; =—h; —h;+~. Then
each n is an independent variable with probability distri-
bution P(n) =z 'exp( Kf(

~
n

~ )j, where z =+-„
X exp I

—Kf(
~
n

~
)j is the one-variable partition function.
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