VOLUME 59, NUMBER 9

PHYSICAL REVIEW LETTERS

31 AUGUST 1987

Fractal Dimension of Rough Surfaces in the Solid-
on-Solid Model

A recent Letter by Mon'? reported Monte Carlo

simulations of rough surfaces in the solid-on-solid (SOS)
model>* for spatial dimensions d =2 and 3. The aim of
the work is to determine the fractal dimension D of these
surfaces. His numerical data show that the excess sur-
face area A4 measured with a length resolution L has
a power-law dependence A(L)=L?"'"P where' D
=1.58 £0.06 for d =2 and? D =3.25+0.05 for d=3.
The purpose of this Comment is to point out that this
problem has recently been studied by another method
and different results obtained.>®

The SOS model>* is inherently anisotropic because
there are only vertical fluctuations above a flat basal
plane. In the rough phase, the vertical root-mean-square
width of the interface, w, diverges with increasing length
L in the basal plane as a power law:

w=b(L/b)*. (D

The characteristic length b defines a crossover length,
because when L =b, then w=L.> Such surfaces have
different rescaling factors along different spatial direc-
tions and are called self-affine fractals,” as opposed to
self-similar fractals, which are isotropic. The fractal di-
mension is given by>’ D=d —x. This is due to the fact
that the excess surface area on length scale L can be es-
timated as

AWL)=Agw/L=A¢(b/L)' ™~ )

where Ag is the area of the basal plane above which fluc-
tuations occur. Note that for L <b, A(L)> A,. The
identification of the exponent x —1 with d —1 — D gives
D =d—x. Note also, from Eq. (2), that for L>b the
surface becomes effectively smooth, since A (L) < A,.

It is well established theoretically that the SOS model
has x=1%3—d) for d <3, with w~(nL)"? for d
=3.34% Hence x =% and 0 for d=2 and 3, respectively,
which implies D=3 for d =2 and D=3 for d =3. The
d =2 result is exact and easily derived.® A completely
general SOS model in d=2 has energy E given
by E/kgT=KY,f(|h;—h;+|), where the *‘column
heights” {h;} are integers and f(x) is an arbitrary func-
tion. For “free” boundary conditions (periodic boundary
conditions are only slightly more complicated, and the
final result is the same) the model is solved by the intro-
duction of the difference variables n;=h; —h;+,. Then
each n is an independent variable with probability distri-
bution P(n)=z ~lexp{—Kf(|n|)}, where z=3"o _.,
xexpf{—Kf(|n])} is the one-variable partition function.
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By the central-limit theorem, the distribution P(h;) of
the variable hy=h; —h;+; =Y 1" 'n; approaches for
large L a Gaussian form with standard deviation
w=(A\2=LV2p)12 Thus, x=1% for d=2. For
d =3, the result w~(InL) ', i.e., x =0, follows from the
properties of the two-dimensional XY model in the low-
temperature phase.’

Mon’s result for d =2 is consistent with these analytic
predictions, but there is a larger discrepancy for d =3.
In particular, the latter result violates the inequality
D < d that follows from Eq. (1): x cannot be less than
zero because physical fluctuations increase with increas-
ing distance.

Our analytic considerations differ from Mon’s numeri-
cal calculation in two technical respects. First, he calcu-
lated (| A, |) instead of (h2)"2. We believe this has no
effect on x or D for the following reason. We have
shown that, for d=2, P(h;) has the scaling form
P(hy)=L ~*g(h L ~%), with x=75. This should hold
for other dimensions, with different values of x, so that
(|he|)> and (22 both scale as L*. Second, the height
difference calculated by Mon is rounded off according to
the resolution L. As a result, his measured area is al-
ways less than the true area. The difference increases
with increasing L, which tends to give a larger value
for D.

Po-zen Wong and Alan J. Bray
Schlumberger-Doll Research
Ridgefield, Connecticut 06877

Received 26 August 1986
PACS numbers: 68.35.Fx, 64.60.Ak, 68.35.Bs, 73.40.—c

1K. K. Mon, Phys. Rev. Lett. 57, 866 (1986).

2K, K. Mon, Phys. Rev. Lett. 57, 1963(E) (1986). This Er-
ratum corrects the value of D for d =3 given in Ref. 1.

3For a review, see J. D. Weeks, in Ordering in Strongly
Fluctuating Condensed Matter Systems, edited by T. Riste
(Plenum, New York, 1980).

4See, e.g., D. J. Wallace, in Phase Transitions, Cargese
1980, edited by M. Levy, J. C. Le Guillou, and J. Zinn-Justin,
NATO Advanced Studies Institute, Series B, Vol. 72 (Plenum,
New York, 1982).

5P.-z. Wong, J. Howard, and J.-S. Lin, Phys. Rev. Lett. 57,
637 (1986).

6pP.-z. Wong, Phys. Rev. B 32, 7417 (1985).

See, e.g., R. F. Voss, in Scaling Phenomena in Disordered
Systems, edited by R. Pynn and A. Skjeltorp (Plenum, New
York, 1985).

8See, e.g., H. J. Leamy, G. H. Gilmer, and K. A. Jackson,
Surface Physics of Materials, edited by J. M. Blakely
(Academic, New York, 1976), p. 121.

1057



