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Constrained Quasiparticles and Conduction in Heavy-Fermion Systems
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By extension of the functional-integral treatment of the Kondo-lattice model of heavy-fermion metals
to real times, I derive a model transport equation. Frequency- and temperature-dependent conductivities
are calculated. Results are contrasted with transport properties of heavy-ferrnion metals.
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A direct signal of the onset of coherence in heavy-
fermion (HF) metals is the sudden reduction in resistivi-
ty at low temperatures. ' Most HF metals display a
large saturated resistance at high temperature, which
drops sharply at low temperature, varying with T near
T=0. Transport anomalies appear in this low-ternpera-
ture regime, including a strong sensitivity to disorder,
frequency dependence of the conductivity, and sign
changes in the magnetoresistance and Hall eA ect.
Qualitatively, these phenomena are understood as a
crossover from incoherent single-ion scattering at high
temperatures to a low-temperature regime where the
strong scattering of conduction electrons oA each mag-

netic ion becomes predominantly elastic, forming a nar-
row quasiparticle band. Recent de Haas-van Alphen
experiments on UPt3 and CeCu6 indicate the develop-
ment of these narrow f bands. However, despite a mea-
sure of success using single-ion models to describe
conduction-electron scattering, there is no general
framework for describing the coherent low-temperature
transport properties in a HF lattice.

In these systems, interactions between the f electrons
strongly suppress the low-frequency charge fluctuations,
and interaction of the residual f-spin degrees of freedom
with the conduction band can be described by a kondo
lattice (KL) model

H=QE(k)c~cl —(I/NF) g iltt(j)f (j)ft (j)
k, m Rq, rn, m '

where, y (j) =gkexp( —ik R, )clt and ft(j), respec-
tively create a conduction or f electron at site j. For
simplicity, spin-orbit coupling is ignored and Np =2J+1
is the electron-spin degeneracy.

In the Kondo model, f-charge Iluctuations are sup-
pressed, and so the quasiparticle fiux into a given mag-
netic site i is zero. Schematically, g fj dS; =dn//dt
=0, where j is the current of a given spin component.
Despite this severe constraint on the currents, f-spin Auc-
tuations given by g m fj dS; =dM, /dt allow a com-
pensated two way flow of-quasiparticle current in the
diAerent spin channels at site i, allowing quasiparticles of
strong f admixture to propagate through the lattice.
Constrained currents are also implied by path-integral
and Gutzwiller treatments of ground-state properties in

the Anderson and Kondo lattice. In this Letter I
show how to construct constrained quasiparticle states
and study their response to an external electric field
E= —Vp coupled to the conduction electrons via the in-
teraction Ht, =eg tie(Rl, t) yt (j) til (j).

The space [I Q, a&] of KL states with Q f electrons at
each magnetic site is constructed by projection from the
Fock space [I a)] of conduction and f electrons, Pg I

a)
=

I Q, a). This mapping extends the quasiparticle con-
cept to the KL. Thus, if ait „=a„(k)c~~+p„(k)f~~
defines an admixed band with a filled Fermi sea

vt (j),

!
rIk (k, , ak . I 0), then

strained Fermi sea, and
Q) =Pg

I p) is the con-

I Q;kmn, . . . , k'm'n') =Pgaq „.. at, „, „ I p)

(2)

where H [v, 0] =H b,„p+g H/(j ),

Hg (3 ) =
Oz [n/ (j ) —

Q ] + N q t
&

/ J+ t h (3 ), (3)

h (j) =g {Vt (j)f (j)+ H. c.]. The phase velocity
variables Hj- play the role of Pg. Transport properties
can now be studied as a I/NF expansion of this real-time
path integral.

Mean-field (MF) behavior in the large-Nt; limit is
determined by the equations v~ (t ) = —(J/2N z) (h (j, t ) )p,
and (n~(j, t)&p=Q, evaluated with use of the MF Hamil-
tonian Hp(t) =H[v(t), g(t)]. In thermal equilibrium
(vl, OJ) =(V,E/) and Hp defines a band of heavy quasi-
particles a i ~

=cos8k~ci + sin 6k~f~, with energies ek~,

defines the constrained quasiparticles. Using Read and
Newns's formalism, ' I recast the constraints as in-
teractions between electrons in the Fock space I

I
a)I

(Q, P!e ' 'I Q, a)
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(p =+ ) satisfying (ek~ —EI)(ek~ —EI, ) —V =0, where
tan6(el, ) = V/(ek& EI). The density of states N*(e)
=p sec 8(e) is strongly enhanced, where p is the conduc-
tion electron density of states at the Fermi surface.

I consider dissipation generated by the O(1/NF) fluc-
tuations about the M F limit, assuming higher-order
terms merely renormalize the leading order. To leading
order, H[v, O] =Hp+g HI(j), where

HI (j ) = (N F/I ) 6i'& +6 i)& nI (j ) + 6 v& h (j ) (4)

determines the RPA propagators for the fluctuations,
denoted by [R(1,2)],~=(r, (1)rp(2)), where r(1)
=[6v(1),60(1)], and 1=(R,t|). I assume that dissipa-
tion is sufhcient to mainlain jluctuarions in thermal
equilibrium, where they are given by analytic continua-
tion of imaginary time propagators R(q, iv„).

I develop the transport theory using real-time electron
propagators ' '

where A=A, 8, or K denotes retarded, advanced, and
Keldysh propagators. 6, M,f, and F are the conduc-
tion, admixed, and f-electron propagators, respectively.
6 obeys a subtracted Dyson equation
[Gp ' —X, G] =0, where "S" denotes convolution
over intermediate time and lattice points and Z(1,2) is
the self-energy.

Because of the retarded nature of the interactions,
there is strong frequency dependence of Z(k, ro, R, T),
[(R,T) = —,

' (1+2)] over the characteristic spin-fluctua-
tion scale Tr, =(EI+5 )'i, where d, =&rpV, so that
r)Z/r1ro=0(Z/Ty. ) The m. omentum dependence of X is
set by the Fermi wave vector kF, so that

~
BZ/BEk

~

=O(Z/p) «
~

tlat/tlco ~, and the dependence on Eq can be
neglected. ' Though this does not imply a Migdal
theorem for spin fIuctuations, it does mean that G is a
sharp function of Ek. Integrating the Dyson equation
with respect to EI, then leads to

G(1,2) = G&(I 2) Gx(I 2)
0 G (1,2)

(s)

[gp '+icr, g] =0.

A ~A
~A FAfc

Here g(k) =i JdEkG(kk)/2&r, and o(k) =Z(kFk) (with
R, t|, and r2 suppressed). "0"denotes time convolution
and

El, (p) V(1)
gp [r [vF' Vn+iep(R, t &)1 +iHp(1 )]6(r 1 r2), Hp(1) = -, r = —, (I +o3),V1 E& 1

(7)

where vp =vpk =VI,EI, at the Fermi surface is the conduction-electron group velocity.
As the electric field only couples to the conduction component g,"=Tr[r,g ] of the density matrix, on carrying out a

gradient expansion of the trace of (7) for slow spatial variation of the electric field I find that transport is determined
by the conduction-electron component of the Fermi liquid, expressed in terms of the distribution function f(k, co, R, T)
= —,

' (1 —
—,
'

g, ), where f=f (ro) =[e~"+1] ' in equilibrium. The current density is given by

j(R, T) =eNFp J"dxf(k, ro, R, T)vq,

where dx =dcodk/4&r and x = (ro, kFk). f obeys the transport equation

[(1 —tl„Rea)BT+(BTRea)8„+vF (V+eEpe' " 8 )]f=Is[f]+I;[f].
Reer= Vtan8(ro)+Reap is a conduction-electron self-energy, where

I

Reap= —
&r& dK'( —,

' —f')a Rep(lc —x') a

(9)

(10)

is due to fluctuations, and a = (r + i ', rt ') [r =tan8(ro)] couples the electrons to the fluctuations p(q, v) =(p/
&rNF)R(q, v —i6) t1 takes disc. rete derivatives 6+= [f/2vp]

Is[f1 = —2&rJ"dx'a Imp(lc —x') aC' (11)

is the inelastic collision term where C„, =8 (x, K')+A(x', x.) describes scattering into and out of the state with A(x, x')
= —

—,
' If', I f]np Here np. =[—ei' —1] ', and f= —,

' Z+ f(co~ —,
' i9T) Finally, .

I; [f] = JI dk'sin 8;(ro)[f(k, ro, R, T) —f(k', ro, R, T)l (12)
2x p

describes elastic impurity scattering with phase shift 8;(ro), impurity density n;
Two transport regimes are described by these equations: (1) guasiparticie regime vp, T« T~. In this regime tI

8/Bro, f(co) f(co) and (9) can be rewritten'' in terms of quasiparticles with energies ek~ =Ek+Recr(ek~), mass
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A.

renormalization Zk~' =sec 6(ek~)+O(1/NF), and distribution function n~~ =f(ek~+ep, k, R, T),

[Br+Zk~vF V~ —V~(ek~+ep)]nq~ =Zk~I[nt„].

ZI pvf vip (( t F is the quasiparticle group velocity and Z~p I, the renormalized scattering rate. The current of the small
conduction component of the Fermi liquid, given in (8), can also be written as a slow current of constrained quasiparti-
cles of predominantly f character, j(R, T) =eNFQ kvk~nl'~ (2). Finite frequencies vo & TK. Here, well-defined quasi-
particle excitations no longer exist. Making the Ansatz f(co,k) fo(co) —AevF E8+o, then in linear response the
equations parallel those of Holstein in the electron-phonon problem, ' yielding a general expression for the conductivi-
ty,

n e t d~ 0 co —v 2 —
0 co+v 2

o(q, v) =
m0 ~ — v y(co, v) +i q vF —i v

(i 4)

where (ne /mo) = —,
' NF pe uF', "FS"denotes a Fermi-surface average, and y= [iZ]„—+„'tz+';s describes the scattering rate

=Rey, and mass renormalization ~(co, v) =Imy/v. 2„=VtanB(co)+Ztt+X;, where

Imps(co —iB) =n. dx'a ImL(v —x') a[1+no(co —co') fo(c—o')] [1 —k k'] (I S)

is an inelastic-scattering rate, and ImZ;(co —i8) =(xn;/
p) sin 8;(co) is due to impurities. Equation (14) only re-
lies on the scattering rate rt, ' being small compared
with p, a weak condition which is still satisfied at high
frequencies beyond the Fermi - liquid regime studied in

earlier work.
To calculate an upper bound on the resistivity, I ap-

proximate p(q, v) using the single-impurity, q-inde-
pendent propagators. ' Actually, q dependence of fluc-
tuations in the lattice is small, reflecting the local na-
ture of the fluctuations, and when combined with the
cosine factor in (15), leads to a small reduction in the
inelastic-scattering rate, without qualitatively modifying
the results.

At low temperatures, the resistivity p(T)=p(0)
+AT. Here A=(2/NF) pU(T/T, ), and pU=(h/
e kF) is the spin- —,

' unitary scattering resistance.
kBT, =1/[x N*(p)], where —,

'
n ksNFN*(p) =y, the

linear specific heat, so that 4/y = ,' pU[2/(kaNF—)] .

This behavior is a consequence of local spin fluctuations
characterized by one energy T, = TK. Figure 1(a) shows
that this T regime only persists for a small fraction of
TK. As TK is approached, oscillator strength in the fluc-
tuations begins to saturate leading to an inflection in the
resistance curve, absent in earlier work. Although the
semiclassical methods used here are not reliable for
T & TK where scattering becomes unitary, by fixing the
MF parameters at some T & TK, the resistance curves
can nevertheless be followed beyond TK giving the rough
trend of the resistance which reaches a peak not far
above T~ as the characteristic fluctuation frequency is
exceeded.

At low frequencies v«Ty. , the conductivity o(v)
=cro/[I —ivro l has a Drude peak, with a long quasipar-
ticle lifetime ro =ro(1+Xo), as shown by Millis and
Lee. Outside this narrow Fermi-liquid regime, strong
frequency dependence of the inelastic processes, not con-
tained in previous work, becomes important. Figure
1(b) shows marked reduction in the conductivity for fre-
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FIG. l. (a) T dependence of resistivity calculated for
1VF=6, Q=l, ignoring impurity scattering; (b) frequency
dependence of conductivity calculated for 1%, 4%, 8%, and
12% of unitary scattering impurities, with NF =6.
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quencies comparable with the hybridization gap around
v=Ef in this simple model, then an intermediate rise at
higher frequencies where interband transitions with
smaller inelastic scattering y(ro, v) become important.

In closing, I note that impurity scattering plays an im-
portant background role in the transport properties, ther-
malizing Auctuations, and dissipating the current they
carry. In fact, we know that if kqT becomes less than
the quasiparticle scattering rate 1/ro, thermalization is
not assured. '" Though in practice, this is a suSciently
low temperature to be ignored, the presence of impurities
is vital to justify the neglect of fluctuation drag and um-

klapp processes. '

With the present simplifications, qualitative features
of this model for HF transport are in accord with experi-
ment: The Fermi-liquid scaling of 2 with y is correct
and by boldly putting Wp =2, pU = 350 p 0 cm,
2/y =1 x10 pA cm mJ mol K is close to the ob-
served value. ' Secondly, the model has validity beyond
this quasiparticle regime, and inAection in the resistance
and tendency to saturate at higher frequencies is in ac-
cord with the qualitative properties of HF metals.

Detailed application of this model to HF metals re-
quires that splitting of the orbital degeneracy by crystal
symmetry and spin-orbit interactions be accounted for.
Some of these efTects can be included in the MF part of
the conduction self-energy, and should have important
consequences for the magnetotransport and the high-
frequency conductivity. It is hoped that some of these is-
sues can be addressed in the near future.
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