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We show that Nose mechanics provides a link between computer simulations of nonequilibrium pro-
cesses and real-world experiments. Reversible Nose equations of motion, when used to constrain non-
equilibrium boundary regions, generate stable dissipative behavior within an adjoining bulk sample
governed by Newton's equations of motion. Thus, irreversible behavior consistent with the second law of
thermodynamics arises from completely reversible microscopic motion. Loschrnidt s reversibility para-
dox is surmounted by this Nose-Newton system, because the steady-state nonequilibrium probability
density in the many-body phase space is confined to a zero-volume attractor.

PACS numbers: 05.70.Ln, 05.20.—y, 46. 10.+z, 65.50.+m

The resolution of Loschmidt's paradox, namely that
particles obeying reversible equations of motion can (in
accordance with the second law of thermodynamics) ex-
hibit irrel. ersible nonequilibrium behavior, is presented
here in a novel application of Nose mechanics. ' This
approach provides the formal structure needed to link
nonequilibrium molecular-dynamics (NEMD) simula-
tions of irreversible processes to real experiments. The
picture we have in mind is a bulk sample composed of
atoms governed by Newton's equations of motion; non-
equilibrium boundary conditions and thermostatting are
imposed in regions surrounding the bulk. In the bound-
ary regions, the atoms are governed by reversible Nose
equations of motion, which, for example, might constrain
the first and second moments of the velocity distribution
so as to generate Couette shear flow at constant tempera-
ture. Another application would be heat flow, with the
two boundary regions thermostatted at diff'erent temper-
atures. Figure 1 is a schematic of such a composite
boundary-bulk-boundary system, with completely re-
versible dynamics achieved by Nose-Newton-Nose equa-
tions of motion, respectively. In this paper, we will show
the relationship of this Nose-Newton nonequilibrium
system to the analogous boundary-driven NEMD intro-
duced by Ashurst and Hoover some fifteen years ago, as
well as to the homogeneous NEMD equations of motion,
which are non-Hamiltonian but nevertheless time reversi-
ble. Finally, we point out the connection linking Nose-
Newton reversible mechanics with the (irreversible)
second law of thermodynamics. We will emphasize
nonequilibrium steady states in our presentation, but the

generalization to cyclic processes involving overall dissi-
pation is straightforward.

Nose's recent modification of Hamiltonian mechan-
ics' ' makes it possible to simulate the equilibrium
dynamics of many-body systems with given values of the
averaged temperature T or pressure P. The average can
be carried out over time for a single system, or
equivalently, for mixing systems, over an ensemble.
Nose showed that the long-time steady-state (equilibri-
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FIG. 1. Schematic of a boundary-bulk-boundary (Nose-
Newton) nonequilibrium system. Here, atoms in the left-most
boundary region are Nose thermostatted at a high tempera-
ture; atoms in the middle (bulk) region are governed by
Newton's equations; atoms in the right-most boundary region
are Nose thermostatted at a low temperature. Heat flows

through the bulk region from left to right. (Vertical walls
separate particles in the three regions via elastic, specular col-
lisions. )
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g(t) =g(0)+„dsg(s),
j(t) = [~(t)/Z, —1]/r'.

(2a)

(2b)

Ao is the long-time steady-state average of the kinetic
energy (kT/2 for each degree of freedom) in the given
boundary region thermostatted at temperature T. r is
the response time of the thermostat, a parameter (in the
limit that i goes to infinity, Newton's equations of
motion are recovered). The thermostatting, or friction
coefficient j, fluctuates about zero at equilibrium, with
fluctuations which vanish in the thermodynamic limit.

There is a close link between Nose thermostatting and
Gauss's principle of least constraint, a standard classical
mechanics textbook method for implementing both holo-
nomic and nonholonomic constraints. If Gauss's princi-
ple is used to constrain the kinetic energy of a many-
body system to a constant value Ko, exactly the same
motion equations result [Eq. (1)1. But in this limiting
case, with z approaching zero, the reversible friction
coefficient jo is given explicitly:

gG
= —@/2KO, (3)

where @ is the potential energy. Thus, the Gauss isoki-
netic equations of motion are an example of differential
feedback.

As pointed out in the introduction„ the Nose-Newton
nonequilibrium system we have proposed provides the
formal structure needed to link these computer simula-
tions of irreversible processes to real experiments.
Ashurst-Hoover boundary-driven NEMD is very closely
related except that they used velocity scaling to thermos-
tat the boundary regions. (Velocity scaling approaches
identically the reversible Gauss isokinetic equations of
motion as the finite-dN'erence time step is made smaller
and smaller. ) For situations close to equilibrium, Nose-
Newton mechanics reproduces the Green-Kubo results of
linear-response theory.

Farther from equilibrium, Nose thermostatting as well
as external (non-Hamiltonian) forces can be used homo-
geneously throughout a system, so as to approximate hy-
drodynamic flows of mass, momentum, ' and ener-

um) distribution in phase space corresponds to the Gibb-
sian canonical or isothermal-isobaric ensemble in the
constant- V and -T or constant-P and -T case, respective-
ly. The distinguishing feature of Nose's isothermal
mechanics is that it allows us to maintain the tempera-
ture of particles in a boundary region at a value T
through a reiersible "friction" coefficient g. For these
boundary particles, Nose's deterministic reversible equa-
tions of motion relate the accelerations q to the forces F,
which depend on the coordinates q (p are the momenta):

p =mq =F(q) —gp.

The friction coefficient for a given boundary region
satisfies the integral feedback equation

Bp/Bt =DV p (4)

can be inverted (extrapolated backward in time), but
only by changing the transport coefficient D (which is in-

gy,
"' in a way which is insensitive to system size. In

these homogeneous systems we consider the boundary re-
gion to be our entire sample, with a single thermostatting
coefficient applied to all degrees of freedom. (In the case
of the relaxation of intramolecular vibrational modes, '

the translational and rotational degrees of freedom are
thermostatted at one temperature, while the vibrational
modes are thermostatted at another; hence, /~0 friction
coefficients are required, one for each thermal reservoir. )
Provided the flows are not too far from equilibrium, '

these artificially constrained states are fairly accurate
approximations to nonequilibrium steady states found in
the absence of homogeneous constraints. Consequently,
all these NEMD methods are related through the Nose-
Newton nonequilibrium system, demonstrating that ir-
reversible dissipative behavior, consistent with the second
law of thermodynamics, results from microscopic equa-
tions of motion which are completely time reversible in
both bulk and boundary regions.

Exactly what is meant by "time reversibility?" This
question has caused considerable confusion, not just in
numerous informal discussions, but even in published
works. ' The fundamental test for, and definition of,
time-reversible equations (which generate time-reversi-
ble motions) is that a movie of such a motion (that is, a
record of the time dependence of the particle coordi-
nates), run backwards through a movie projector, would
still satisfy exactly the same equations of motion. The
Nose-Newton equations of motion are time reversible in
this sense. Because in Nose s original Hamiltonian
derivation the friction coefficients g arise as momenta, all
these friction coefficients, as well as all the particle mo-
menta, change sign in the time-reversed motion. It is
clear, in the typical equations of motion [Eqs. (1) and
(2)], that changing the signs of the time t, the momenta
p, and the thermostatting coefficients g, while leaving the
coordinates q on which the forces F depend unchanged,
generates the reverse trajectory.

This behavior is qualitatively diA'erent from that typi-
cal of chaotic dissipative maps, such as the Henon
map, ' or from that characterizing the dissipative equa-
tions of continuum mechanics, such as the diAusion
equation. In both these irreversible cases the equation of
motion is clearly invertible (meaning that the past can
be calculated from the present) but the form of the
equation which describes the forward evolution is diff'er-
ent from the form of the equation describing the back-
ward evolution. The Henon map, for instance, contracts
phase-space area when iterated forward in time. The in-
verted map obtained from the Henon map expands areas
and so has a qualitatively diflerent analytic form. Like-
wise, the solutions of the diA'usion equation
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trinsically positive) to a negative value.
The mathematical structures of dissipative maps and

the hydrodynamic equations are inherently irreversible.
The Nose-Newton equations are diflerent: They are
time reversible. That is, the inverted equations which

trace motion backward along any trajectory are identical
to the equations describing the forward motion. The
amazing thing about the Nose-Newton equations applied
to steady-state nonequilibrium systems is that they are
found (numerically) to produce dissipative behavior, just
as the invertible but time-irreversible dissipative maps of
chaos theory and the irreversible partial diAerential
equations of fluid dynamics do. This thermodynamically
irreversible behavior occurs in both small and large sys-
terns. For any such system with any initial condition,
Nose-Newton mechanics leads to heat flow from high
temperature to low temperature, '' corresponding to a
positive heat conductivity. Likewise, positive diftusion
coefficients and viscosity coefficients' result, even for
systems involving only a few degrees of freedom.

The thermodynamic interpretation of this dissipative

property is of general validity: The analog of Liouville's
theorem, with use of Nose-Newton mechanics, becomes
an equation for the time evolution of the phase-space
density f(q, p, g, r):

(5)

where the sum is over all boundary degrees of freedom.
(In the example shown in Fig. I, the sum contains many
terms from many particles, but only two diA'erent classes
of terms, and only two diAerent friction coe%cients,
namely one for the hot boundary and one for the cold
boundary. ) The sum over friction coefficients (j) can
then be related to

E =TS = —l&T(,

the rate at which energy E is being exchanged between a
given degree of freedom, thermostatted at temperature
T, and its corresponding Nose reservoir. If a reservoir
extracts heat, the corresponding 5 is negative, increasing

f; if a reservoir furnishes heat, the corresponding S is

positive, decreasing f
Thus if energy is dissipated in the steady-state system,

then the sum of 5 over all reservoirs is negative, and the
distribution function must eventually diverge to infinity
at the steady state, indicating a collapse of the phase-
space probability onto a subspace with zero volume. In
the cases which have so far been analyzed numerically,
the collapse does occur; the resulting subspace is indeed
a fractal ' at tractor. The simplest such example is
shown in Fig. 2. (To date, the number of degrees of
freedom, or dimensionality of phase space, has necessari-
ly been restricted to few-body problems. Lyapunov spec-
tra for eight particles in a three-dimensional fluid, driven

by an external field, confirm the one-body and two-body

FIG. 2. Left: A Poincare attractor section, corresponding to
the relative probability of the momentum p and Nose friction
coefficient j, at a fixed value of q. There is a periodic
sinusoidal potential and an external driving field. For details,
see Ref. 9. Right: The corresponding repellor (with the

momentum p and friction coefficient j changed in sign relative
to the attractor) which, although violating the second law of
thermodynamics, has such a small probability of being ob-
served (precisely zero) as to be unobservable. The dimen-

sionality of the Poincare section is 1.50 ~ 0.02. The
prevalence of positive-p points implies that the conductivity is

positive. The prevalence of positive-( points implies that the
thermodynamic dissipation of work into heat is likewise posi-

tive.

results ' of phase-space contraction to a fractal strange
attractor. )

How is this collapse of probability onto a zero-volume
attractor related to the second law of thermodynamics?
The phase-space states which can violate the second law

by steadily converting heat back into work are precisely
those of the corresponding unstable repellor (an object
just like the stable attractor, but with the signs of the
momenta, friction coe%cients, and Lyapunov coe%cients
all changed). For the sinusoidal diffusion example, the
attractor and repellor are illustrated on the left- and
right-hand sides of Fig. 2. It is clear from Fig. 2 that the
repellor states correspond both to an unphysical negative
conductivity and to a negative dissipation, through which
heat is continuously converted into work.

Thus steady states which could violate the second law,
if they were observable, span a volume of exactly the
same size as does the zero-volume attractor. By the
choice of any state near the attractor which has been
propagated forward in time for a time tf„„„d, then a
change of the signs of the momenta and thermostatting
coefficients, and propagation backward, the second law
can be violated for a time tf„„„d. But the only way that
a permanent (steady-state) violation of the second law
could occur would require an inversion of a state precise-
ly on the zero-volume attractor. These states occupy
precisely zero volume and require an infinitely long
simulation in the forward time direction for their charac-
terization.

The conclusion of this novel analysis of Nose-Newton
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mechanics is most interesting, and follows along the line
of Prigogine's attempts to understand the irreversibility
of the second law of thermodynamics through the struc-
ture of microscopic reversible equations. ' (He views the
problem of irreversibility from a diferent, but comple-
mentary, perspective, namely, the relaxation of a non-
equilibrium initial condition toward equilibrium. The
Nose-Newton formalism applies here, too: We can
imagine a nonequilibrium steady state having been
achieved, and then turning off the driving force. The
Newtonian bulk, whose distribution function is initially a
zero-volume strange attractor, then relaxes toward equi-
librium with its phase space expanding and the entro-

py increasing —irreversibility. ) The reversibility para-
dox ' disappears when Nose-Newton mechanics is used
to describe steady-state nonequilibrium systems, despite
their mathematical reversibility. Any initial conditions
which could violate the second law of thermodynamics
have precisely zero probability, even for small systems
with only a few degrees of freedom. Thus, the present
combination of (l) the fractal concepts popularized by
Mandelbrot, (2) the reversible dynamics introduced by
Nose (and related to Gauss's principle), and (3) comput-
ers powerful enough to study the consequences of these
ideas, has resolved the old reversibility paradox for non-
equilibrium steady states. That is, unstable states going
backward in time are never observed, not because they
violate the equations of motion, but rather because the
probability of observing them is precisely zero.
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