
VOLUME 58, NUMBER 10 PHYSICAL REVIEW LETTERS 9 MARCH 1987

Manifestation of the Berry Phase in Diabolic Pair Transfer in Rotating Nuclei
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A new manifestation of the Berry phase is presented in the theory of fast-rotating superfluid nuclei:
Diabolic pair transfer, i.e. , oscillation of the pair-transfer matrix elements as a function of the angular
velocity, is shown to be the direct consequence of the Berry phase, giving a nontrivial contribution at the
diabolical points of cranked Hartree-Fock-Bogoliubov spectra.

PACS numbers: 25.70.Cd, 03.65.Bz, 21.60.Ev

Considering a general Hamiltonian H(R), which de-
pends on several parameters R = (X, I', . . . ), Berry
discovered recently' that a quantum system described as
an eigenstate of this Hamiltonian acquires a topological
phase factor expIiy(C)I when transported adiabatically
around a path C in parameter space. This phase is of
special importance in cases where the path includes a
so-called diabolical point, i.e., a point in parameter space
where two eigenenergy surfaces E~(R) and E2(R) with
the same symmetries of the Harniltonian touch each oth-
er. These points are exceptional points in the sense that
they violate the no-crossing rule of von Neumann and
Wigner.

Recently the manifestation of this phase has appeared
in many diverse areas of physics (cf. Chiao and Wu and
references given therein). As Berry himself has pointed
out, this phase factor is quite universal and appears for
any system described by a Hermitian operator, quantum
mechanical or not. In this Letter we present an example
in nuclear physics. We show that the recently predicted
diabolic pair transfer in rotating superfluid nuclei is a
direct manifestation of a Berry phase.

It has been already realized in Bengston, Hamamoto,
and Mottelson and Frisk and Szymanski that the
cranked-shell-model Hamiltonian

The diabolical points of the Hamiltonian (1) corre-
spond to alignment processes of particles in the intruder
orbits. They indicate sharp level crossings between cer-
tain configurations, as for instance between the ground-
state band and an aligning two-quasiparticle band or be-
tween other multi-quasiparticle configurations. In the
rare-earth region the intruder orbit is the neutron li ~3/2

orbit. We therefore use a model of particles moving in a
deformed and superfluid single-j shell with j = —", , with

c~ =x.[3K /j(j+1) —I]. K is proportional to the defor-
mation and in the following all energies are measured in

units of tc In pa. rticular we use d/x =0.45.
In Fig. 1 we show the diabolical points in the (X, cu)

plane. The pattern of these points is very regular, as is
shown in a schematic way in Fig. 2. This can be under-
stood in terms of vanishing spatial overlap integrals be-
tween rotating single-particle orbits with difTerent signa-
tures. In Fig. 1 we also give the lines of constant average
particle number and we find an interesting bunching of
these lines at the diabolical points. This means that in

the neighborhood of these points we have considerable
change in the particle number. Following lines of' con-
stant angular velocity, the particle number has a behav-

~K ~ jx
—(sir —X —cuj )

Cd JK

has in its spectrum several diabolical points. Its eigen-
functions are many-body wave functions of the Hartree-
Fock-Bogoliubov (H F B) type. They describe rotating
superfluid nuclei and depend on two parameters: the
chemical potential X and the angular velocity cu. These
parameters are determined by the particle number 4 and
the angular momentum I and are closely connected to
deformations and pairing correlations, the most most im-
portant degrees of freedoms of nuclear collective motion.
Many of the interesting features of high-spin physics de-
pend upon only one of these parameters. It is the special
property of the effect discussed in this paper that it is
connected intimately with both of these parameters.
That is to say the physics which is described in the fol-
lowing can only be understood in the (X, ru) plane.
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FIG. 1. The diabolical points (indicated by circles) in the
(X, cc)) plane for the j= —", model. Lines correspond to lines of
constant average particle number, indicated by the numbers
1,2, . . . , above the abscissa.
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FIG. 2. Schematic representation of the pattern of diaboli-
cal points in the (X, co) plane. Full horizontal arrows indicate
pair-transfer matrix elements with positive sign and dashed ar-
rows indicate those with negative sign. Below the abscissa we

indicate the K quantum numbers in the deformed j = —", shell.

On the right-hand side experimental trajectories are shown,
which correspond to two different paths around a diabolical
point which yield destructive interference.

ior similar to a step function at these points, i.e. , we have
a very small "effective" pairing in these regions. Howev-

er, this does not mean that here we have pairing collapse
as predicted by Mottelson and Valatin; in fact these cal-
culations have been carried out with a constant gap pa-
rameter 6, and, apart from the diabolical regions, the
particle number is a smooth function of the chemical po-
tential X.

We now study the influence of the Berry phase at a
specific diabolical point. We have to choose a closed
path in the (),cu) plane around this point. To under-
stand the following considerations we have to remind
ourselves what the physical meaning of such a path is:
Changes in k at constant co mean changes in the particle
number at constant angular momentum, i.e. , transitions
from the nucleus 8 with spin I to the nucleus 0 + 2 with
the same spin I. They are connected with the transfer of
a pair of nucleons coupled to angular momentum zero.
Changes in cu for constant X indicate changes of the an-
gular momentum within the same nucleus. This is made
clear schematically in Fig. 2.

We characterize the path around the diabolical point
by a path parameter 0. By the diagonalization of the
Hamiltonian (I) the wave function at each point on this
path (k(0), ru(0)) is determined only up to an arbitrary
phase. As stated in the work of' Simon ' we use a natu-
ral Hermitian connection to determine the relative phase
between two neighboring HFB functions: (6&(0)

~

&b(0

+e)) = I +0(e ). Since we use real matrix elements
Berry tells us that our wave function

~

N(0)) acquires a
phase —l, if we follow this path around the diabolical
point. In Fig. 3 we have as an example chosen s closed
path around the left-most diabolical point in Fig. 1. We
clearly see the change in phase close to 0=60 .

We now investigate the influence of the Berry phase
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FIG. 3. The norm overlap (@(8a)
~
&P(8)) (unbroken line)

and the pair-transfer overlap (d&(8a)
~
5

~
&P(8)) (dashed line)

for an elliptic path 2 =).a+ 0.2 cos(8), co = coo+0.01 sin (8)
around the diabolical point Xo= —0.94, coo=0.089. 0 is the
angle in the (X, co) plane.

of a pair of particles coupled to angular momentum zero
[S =(c c )L=o). For this purpose we study the behav-
ior of olT-diagonal matrix elements (N(0o) i S ~

N(0)) as
a function of 0 along a path around a diabolical point.
As we see in Fig. 3, this matrix element behaves very
similarly to the overlap (N(0o) i&(0)). In particular it

shows the same change of phase. We can easily under-
stand this fact by considering only the close neighbor-
hood of the diabolical point, where we have to a good ap-
proximation a two-level problem (as discussed by Berry
in Ref'. I). In our case these two levels are the ground-
state band and the hand of an aligned pair of quasiparti-
cles (usually called s band). The diagonalization of the
Hamiltonian (1) is then reduced to a 2x 2 problem

Z L

where the parameters Z and A' are closely connected to
and —const & co. On a closed circle with infini-

tesimal radius the normalized eigenfunctions of (3) can
be expressed by an angle 0', with tan(0') =X/Z:

cos(0'/2)
+(0') )

which gives (d&(0o) +(0')) =cos[(0' —Oo)/2] and the
phase —

1 by going around the circle form 0'=00 to
0'=00+2'. We can consider the matrix elements of the

on the transfer matrix element

P(1) =(2 +2, l i S i A, l)

= (&9(X(A + 2), cu (l ) )
~
S '

~
e().(W ), cu (l) ) ) (2)
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pair-transfer operator 5 to be roughly constant in thist

2&&2 representation and find the same phase change in

the matrix element (&b(Oo)
~
S

~

N(0')). In Fig. 3 we

present the norm overlap and the pair-transfer overlap
for the full matrix (1). In this case both quantities
behave rather similarly; in particular, both show the
phase factor —

l on the closed path. This similar behav-
ior can be understood as usual by the fact that 5 is only
a generalized one-particle operator and can change only
a small part of the many-body wave function

~
@), an ar-

gument which is often used in the literature.
We nor consider the pair-transfer matrix element

P(I) in Eq. (2) as a function of the angular momentum.
At I=O we choose the relative phases of the wave func-
tions in such a way that this matrix element P(I =0) is

positive. With increasing angular momentum we then
have two paths corresponding to the two sets of wave
functions with particle number 2 and 2+2. On each of
these paths we again choose the phases of the wave func-
tions by a continuous connection [(&b(co)

~
N(cd+~)) =1

+O(c )]. From Fig. 2 it becomes clear for this choice
of phases that, starting at angular momentum zero, the
matrix element P(I) stays positive as long as the transfer
happens at an angular velocity smaller than the first dia-
bolical point. In the diabolical region the phase changes,
i.e. , the pair-transfer matrix element goes through zero,
otherwise we could choose a path enclosing the diabolical
point without the phase change predicted by Berry. Fol-
lowing these arguments we conclude that with increasing
angular momentum, the pair-transfer matrix element
P(1) always changes sign at the diabolical regions. We
thus have a very natural explanation for the recently pre-
dicted eftect of diabolic pair transfer, namely the oscil-
lating behavior of this matrix element shown in Fig. 4.

As pointed out in Ref. 4 this efTect is a nuclear analog
of the dc Josephson efrect in solid-state physics. Obvi-
ously the nucleus is a finite system and therefore the
number of oscillations is finite. As we see from Fig. 2 it
depends on the number of diabolical points between the
two paths k(A), co and k(A +2), co. In Fig. 1 and in Fig.
4 we find that we have no such diabolical point and no
oscillation if the pair of nucleons is transferred to the
neighborhood of the K =

& or of the K = —", orbit in the

i~3~q shell. We have one diabolical point and one sign
change of the pair-transfer matrix element, if the pair is

transferred to the K=
& or to the K = —", orbit. For the

K = —', and the K = —', we have two and for the K = —', or-
bit we have three oscillations.

From the extended calculations of Refs. 6 and 8 it is
evident that the efTect is not only restricted to the i = —",

model, but also shows up in fully realistic configuration
spaces. In fact, all the arguments given in the present
paper apply to the general case, too. It is, therefore, cer-
tainly a most interesting question to ask if this new efTect
can be discovered experimentally. The most direct evi-
dence for the phase change would certainly be a destruc-
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FlG. 4. The pair-transfer matrix elements in Eq. (2) a»

functions of the angular velocity for different positions of the
chemical potential (indicated by the quantum number K).
This means that the transferred pair occupies the orbits + K
with a large probability.

tive interference between the two trajectories, viz.
(A, I) (A + 2, I ) (A + 2, I + 2) and (A, I)= (A, I
+2) —(A +2,I+2) which enclose a diabolical point, as
shown in Fig. 2.

On the right-hand side of Fig. 2 we show, at least
schematically, the experiment which would correspond to
these two paths. It represents Coulomb excitation using
heavy ions in connection with the transfer of a pair of
particles. In a classical approximation the transfer takes
place at the distance of closest approach, at which half
the final angular momentum is transferred. We there-
fore propose the following: Choose an appropriate initial

energy and look only for the largest final angular mo-

menta, such that the two most important reaction contri-
butions come from the paths on two difterent sides of' a
diabolical point. In such a case one should be able t(~

study the destructive interference between the wave

functions corresponding to these two trajectories.
Since this is probably a very difficult experiment, we

would propose only looking at the square of the pair-
transfer matrix element: In the diabolic region it goes
through zero, which means that one should observe a
reduction of this quantity in the region. There are essen-
tially two ways to search for such a reduction: (i) One
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could investigate the behavior of P(I) for a fixed value of
8 as a function of the angular momentum I. In this case
one crosses the diabolical region in Fig. 2 in a vertical
direction. (ii) One also could investigate the behavior of
P(l, A) for fixed "diabolical" I in a chain of isotopes,
i.e. , as a function of A. Now we cross the diabolical re-
gions in a horizontal direction. One should observe a
reduction for those nuclei which show a particularly
strong backbending. ' '

Since the diabolical points lie at relatively low angular
rnomenta in many nuclei, wh ich can be reached by
Coulomb excitation with heavy ions in connection with
pair transfer, ' we hope that this new manifestation of
the Berry phase will be seen experimentally in the near
future.
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